基于神经网络的有序目标变量自适应增强

Insung Um, Geonseok Lee, K. Lee
{"title":"基于神经网络的有序目标变量自适应增强","authors":"Insung Um, Geonseok Lee, K. Lee","doi":"10.1002/sam.11613","DOIUrl":null,"url":null,"abstract":"Boosting has proven its superiority by increasing the diversity of base classifiers, mainly in various classification problems. In reality, target variables in classification often are formed by numerical variables, in possession of ordinal information. However, existing boosting algorithms for classification are unable to reflect such ordinal target variables, resulting in non‐optimal solutions. In this paper, we propose a novel algorithm of ordinal encoding adaptive boosting (AdaBoost) using a multi‐dimensional encoding scheme for ordinal target variables. Extending an original binary‐class AdaBoost, the proposed algorithm is equipped with a multi‐class exponential loss function. We show that it achieves the Bayes classifier and establishes forward stagewise additive modeling. We demonstrate the performance of the proposed algorithm with a base learner as a neural network. Our experiments show that it outperforms existing boosting algorithms in various ordinal datasets.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive boosting for ordinal target variables using neural networks\",\"authors\":\"Insung Um, Geonseok Lee, K. Lee\",\"doi\":\"10.1002/sam.11613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Boosting has proven its superiority by increasing the diversity of base classifiers, mainly in various classification problems. In reality, target variables in classification often are formed by numerical variables, in possession of ordinal information. However, existing boosting algorithms for classification are unable to reflect such ordinal target variables, resulting in non‐optimal solutions. In this paper, we propose a novel algorithm of ordinal encoding adaptive boosting (AdaBoost) using a multi‐dimensional encoding scheme for ordinal target variables. Extending an original binary‐class AdaBoost, the proposed algorithm is equipped with a multi‐class exponential loss function. We show that it achieves the Bayes classifier and establishes forward stagewise additive modeling. We demonstrate the performance of the proposed algorithm with a base learner as a neural network. Our experiments show that it outperforms existing boosting algorithms in various ordinal datasets.\",\"PeriodicalId\":342679,\"journal\":{\"name\":\"Statistical Analysis and Data Mining: The ASA Data Science Journal\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Analysis and Data Mining: The ASA Data Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/sam.11613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

增强算法通过增加基分类器的多样性,特别是在各种分类问题中,证明了它的优越性。在现实中,分类中的目标变量往往是由数值变量构成的,它们拥有有序的信息。然而,现有的分类增强算法无法反映这种有序的目标变量,导致非最优解。本文提出了一种新的有序编码自适应增强算法(AdaBoost),该算法采用一种针对有序目标变量的多维编码方案。该算法扩展了原有的二类AdaBoost算法,并引入了多类指数损失函数。我们证明它实现了贝叶斯分类器,并建立了前向阶段加性建模。我们用一个基础学习器作为神经网络来证明所提出算法的性能。我们的实验表明,它在各种有序数据集上优于现有的增强算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive boosting for ordinal target variables using neural networks
Boosting has proven its superiority by increasing the diversity of base classifiers, mainly in various classification problems. In reality, target variables in classification often are formed by numerical variables, in possession of ordinal information. However, existing boosting algorithms for classification are unable to reflect such ordinal target variables, resulting in non‐optimal solutions. In this paper, we propose a novel algorithm of ordinal encoding adaptive boosting (AdaBoost) using a multi‐dimensional encoding scheme for ordinal target variables. Extending an original binary‐class AdaBoost, the proposed algorithm is equipped with a multi‐class exponential loss function. We show that it achieves the Bayes classifier and establishes forward stagewise additive modeling. We demonstrate the performance of the proposed algorithm with a base learner as a neural network. Our experiments show that it outperforms existing boosting algorithms in various ordinal datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信