曲线链接触构型的计算

Kai Tang
{"title":"曲线链接触构型的计算","authors":"Kai Tang","doi":"10.1006/gmip.1999.0507","DOIUrl":null,"url":null,"abstract":"<div><p>Given a simple generalized polygon <span><math><mtext>A</mtext></math></span> of line segments and arcs that is free to move and rotate and an oriented monotone chain <span><math><mtext>B</mtext></math></span> composed of smooth parametric curved edges, the positions and orientations for <span><math><mtext>A</mtext></math></span> to gouge-freely contact <span><math><mtext>B</mtext></math></span> (i.e., the contact configurations) is a <em>C</em><sup>0</sup> continuous surface in a three dimensional space <strong>R</strong><sup>3</sup>. Past results either limit <span><math><mtext>B</mtext></math></span> to be polygonal or depend on the very complicated cylindrical algebraic decomposition algorithm, which is difficult to implement in practice and does not apply to parametric curves. We address this problem by conducting a rigorous study of the geometric and topological structures of the contact configurations surface and providing the exact mathematical descriptions of the faces, edges, and vertices on this surface. A practical intersection algorithm is proposed for computing the critical curves on the contact configurations surface. In addition, an application of the contact configurations in mill-turn machining is presented.</p></div>","PeriodicalId":100591,"journal":{"name":"Graphical Models and Image Processing","volume":"61 6","pages":"Pages 341-361"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/gmip.1999.0507","citationCount":"1","resultStr":"{\"title\":\"On Computing Contact Configurations of a Curved Chain\",\"authors\":\"Kai Tang\",\"doi\":\"10.1006/gmip.1999.0507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a simple generalized polygon <span><math><mtext>A</mtext></math></span> of line segments and arcs that is free to move and rotate and an oriented monotone chain <span><math><mtext>B</mtext></math></span> composed of smooth parametric curved edges, the positions and orientations for <span><math><mtext>A</mtext></math></span> to gouge-freely contact <span><math><mtext>B</mtext></math></span> (i.e., the contact configurations) is a <em>C</em><sup>0</sup> continuous surface in a three dimensional space <strong>R</strong><sup>3</sup>. Past results either limit <span><math><mtext>B</mtext></math></span> to be polygonal or depend on the very complicated cylindrical algebraic decomposition algorithm, which is difficult to implement in practice and does not apply to parametric curves. We address this problem by conducting a rigorous study of the geometric and topological structures of the contact configurations surface and providing the exact mathematical descriptions of the faces, edges, and vertices on this surface. A practical intersection algorithm is proposed for computing the critical curves on the contact configurations surface. In addition, an application of the contact configurations in mill-turn machining is presented.</p></div>\",\"PeriodicalId\":100591,\"journal\":{\"name\":\"Graphical Models and Image Processing\",\"volume\":\"61 6\",\"pages\":\"Pages 341-361\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1006/gmip.1999.0507\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphical Models and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1077316999905075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077316999905075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

给定一个可以自由移动和旋转的线段和圆弧组成的简单广义多边形a和一条由光滑参数曲线边组成的定向单调链B,则a与自由划触B的位置和方向(即接触构型)是三维空间R3中的一个C0连续曲面。过去的结果要么将B限制为多边形,要么依赖于非常复杂的圆柱代数分解算法,这种算法在实践中很难实现,也不适用于参数曲线。我们通过对接触配置表面的几何和拓扑结构进行严格的研究,并提供该表面上的面、边和顶点的精确数学描述来解决这个问题。提出了一种实用的计算接触构形面临界曲线的交点算法。此外,还介绍了接触结构在车削加工中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Computing Contact Configurations of a Curved Chain

Given a simple generalized polygon A of line segments and arcs that is free to move and rotate and an oriented monotone chain B composed of smooth parametric curved edges, the positions and orientations for A to gouge-freely contact B (i.e., the contact configurations) is a C0 continuous surface in a three dimensional space R3. Past results either limit B to be polygonal or depend on the very complicated cylindrical algebraic decomposition algorithm, which is difficult to implement in practice and does not apply to parametric curves. We address this problem by conducting a rigorous study of the geometric and topological structures of the contact configurations surface and providing the exact mathematical descriptions of the faces, edges, and vertices on this surface. A practical intersection algorithm is proposed for computing the critical curves on the contact configurations surface. In addition, an application of the contact configurations in mill-turn machining is presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信