基于上下文多臂强盗学习的车辆边缘网络缓存更新

Yaorong Huang, Penglin Dai, Kangli Zhao, Huanlai Xing
{"title":"基于上下文多臂强盗学习的车辆边缘网络缓存更新","authors":"Yaorong Huang, Penglin Dai, Kangli Zhao, Huanlai Xing","doi":"10.1109/ISPCE-ASIA57917.2022.9970879","DOIUrl":null,"url":null,"abstract":"Vehicular edge caching (VEC) is expected to support real-time intelligent transportation systems by providing low-latency data services. However, dynamic vehicular environment, such as time-varying data freshness and dynamic data preference, may result in low cache efficiency. Based on the above motivation, this paper designs a system model of freshness-aware VEC system. Accordingly, we formulate the problem of Vehicular Edge Cache Update (VECU) by exploiting the concept of AoI and data heterogeneity for evaluating data freshness, which aims at maximizing the edge cache benefit. On this basis, the Contextual Multi-Armed Bandit for Caching Update (CMAB-CU) algorithm is designed to determine cache update decision by online estimating reward of each arm based on a linear function of dynamic vehicular features and historical observations. Finally, we modeling a simulation model and conduct simulation results, which demonstrates the effectiveness of the proposed algorithm in various service scenarios.","PeriodicalId":197173,"journal":{"name":"2022 IEEE International Symposium on Product Compliance Engineering - Asia (ISPCE-ASIA)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contextual Multi-Armed Bandit Learning for Freshness-aware Cache Update in Vehicular Edge Networks\",\"authors\":\"Yaorong Huang, Penglin Dai, Kangli Zhao, Huanlai Xing\",\"doi\":\"10.1109/ISPCE-ASIA57917.2022.9970879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vehicular edge caching (VEC) is expected to support real-time intelligent transportation systems by providing low-latency data services. However, dynamic vehicular environment, such as time-varying data freshness and dynamic data preference, may result in low cache efficiency. Based on the above motivation, this paper designs a system model of freshness-aware VEC system. Accordingly, we formulate the problem of Vehicular Edge Cache Update (VECU) by exploiting the concept of AoI and data heterogeneity for evaluating data freshness, which aims at maximizing the edge cache benefit. On this basis, the Contextual Multi-Armed Bandit for Caching Update (CMAB-CU) algorithm is designed to determine cache update decision by online estimating reward of each arm based on a linear function of dynamic vehicular features and historical observations. Finally, we modeling a simulation model and conduct simulation results, which demonstrates the effectiveness of the proposed algorithm in various service scenarios.\",\"PeriodicalId\":197173,\"journal\":{\"name\":\"2022 IEEE International Symposium on Product Compliance Engineering - Asia (ISPCE-ASIA)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Product Compliance Engineering - Asia (ISPCE-ASIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPCE-ASIA57917.2022.9970879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Product Compliance Engineering - Asia (ISPCE-ASIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPCE-ASIA57917.2022.9970879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

车辆边缘缓存(VEC)有望通过提供低延迟数据服务来支持实时智能交通系统。然而,时变的数据新鲜度和动态的数据偏好等动态车辆环境可能导致缓存效率较低。基于上述动机,本文设计了一个新鲜度感知VEC系统的系统模型。因此,我们利用AoI和数据异构的概念,提出了车辆边缘缓存更新(VECU)问题,以评估数据新鲜度,从而最大化边缘缓存的效益。在此基础上,设计了基于车辆动态特征和历史观测值的线性函数,通过在线估计各臂的奖励来确定缓存更新决策的上下文多臂强盗缓存更新算法(CMAB-CU)。最后建立了仿真模型并进行了仿真,验证了所提算法在各种业务场景下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contextual Multi-Armed Bandit Learning for Freshness-aware Cache Update in Vehicular Edge Networks
Vehicular edge caching (VEC) is expected to support real-time intelligent transportation systems by providing low-latency data services. However, dynamic vehicular environment, such as time-varying data freshness and dynamic data preference, may result in low cache efficiency. Based on the above motivation, this paper designs a system model of freshness-aware VEC system. Accordingly, we formulate the problem of Vehicular Edge Cache Update (VECU) by exploiting the concept of AoI and data heterogeneity for evaluating data freshness, which aims at maximizing the edge cache benefit. On this basis, the Contextual Multi-Armed Bandit for Caching Update (CMAB-CU) algorithm is designed to determine cache update decision by online estimating reward of each arm based on a linear function of dynamic vehicular features and historical observations. Finally, we modeling a simulation model and conduct simulation results, which demonstrates the effectiveness of the proposed algorithm in various service scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信