二阶时滞系统卡尔曼猜想的一个证明

Jingfan Zhang, W. Heath, J. Carrasco
{"title":"二阶时滞系统卡尔曼猜想的一个证明","authors":"Jingfan Zhang, W. Heath, J. Carrasco","doi":"10.1109/CONTROL.2018.8516827","DOIUrl":null,"url":null,"abstract":"We believe that second-order systems with time delay satisfy the Kalman conjecture. Recently, we have submitted a paper constructing Zames-Falb multipliers for several cases [1], but a formal proof is still to be developed. This abstract summarises recent development towards a formal proof of the above statement. The construction of the multiplier is irrational, and the proof cannot be developed as in the non-delay case as it uses the pole location of the closed-loop system at the Nyquist gain. Hence a proof would be significantly different from the current proofs provided of the Kalman conjecture for different cases [2]–[4].","PeriodicalId":266112,"journal":{"name":"2018 UKACC 12th International Conference on Control (CONTROL)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards a Proof of the Kalman Conjecture for the Second Order Systems with Time-Delay\",\"authors\":\"Jingfan Zhang, W. Heath, J. Carrasco\",\"doi\":\"10.1109/CONTROL.2018.8516827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We believe that second-order systems with time delay satisfy the Kalman conjecture. Recently, we have submitted a paper constructing Zames-Falb multipliers for several cases [1], but a formal proof is still to be developed. This abstract summarises recent development towards a formal proof of the above statement. The construction of the multiplier is irrational, and the proof cannot be developed as in the non-delay case as it uses the pole location of the closed-loop system at the Nyquist gain. Hence a proof would be significantly different from the current proofs provided of the Kalman conjecture for different cases [2]–[4].\",\"PeriodicalId\":266112,\"journal\":{\"name\":\"2018 UKACC 12th International Conference on Control (CONTROL)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 UKACC 12th International Conference on Control (CONTROL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONTROL.2018.8516827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 UKACC 12th International Conference on Control (CONTROL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONTROL.2018.8516827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们认为二阶时滞系统满足卡尔曼猜想。最近,我们提交了一篇论文,构建了几种情况下的Zames-Falb乘数[1],但正式的证明仍有待开发。这篇摘要总结了对上述陈述的形式化证明的最新进展。乘法器的构造是不合理的,由于它使用的是闭环系统在奈奎斯特增益处的极点位置,因此不能像在非延迟情况下那样进行证明。因此,对于不同的情况,证明将与目前提供的卡尔曼猜想的证明有很大的不同[2]-[4]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards a Proof of the Kalman Conjecture for the Second Order Systems with Time-Delay
We believe that second-order systems with time delay satisfy the Kalman conjecture. Recently, we have submitted a paper constructing Zames-Falb multipliers for several cases [1], but a formal proof is still to be developed. This abstract summarises recent development towards a formal proof of the above statement. The construction of the multiplier is irrational, and the proof cannot be developed as in the non-delay case as it uses the pole location of the closed-loop system at the Nyquist gain. Hence a proof would be significantly different from the current proofs provided of the Kalman conjecture for different cases [2]–[4].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信