实现微笑:期权定价与实现波动率

Fulvio Corsi, Nicola Fusari, D. La Vecchia
{"title":"实现微笑:期权定价与实现波动率","authors":"Fulvio Corsi, Nicola Fusari, D. La Vecchia","doi":"10.2139/ssrn.1547032","DOIUrl":null,"url":null,"abstract":"We develop a discrete-time stochastic volatility option pricing model exploiting the information contained in the Realized Volatility (RV), which is used as a proxy of the unobservable log-return volatility. We model the RV dynamics by a simple and effective long-memory process, whose parameters can be easily estimated using historical data. Assuming an exponentially affine stochastic discount factor, we obtain a fully analytic change of measure. An empirical analysis of Standard and Poor's 500 index options illustrates that our model outperforms competing time-varying and stochastic volatility option pricing models.","PeriodicalId":170638,"journal":{"name":"Johns Hopkins Carey Business School Research Paper Series","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"112","resultStr":"{\"title\":\"Realizing Smiles: Options Pricing with Realized Volatility\",\"authors\":\"Fulvio Corsi, Nicola Fusari, D. La Vecchia\",\"doi\":\"10.2139/ssrn.1547032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a discrete-time stochastic volatility option pricing model exploiting the information contained in the Realized Volatility (RV), which is used as a proxy of the unobservable log-return volatility. We model the RV dynamics by a simple and effective long-memory process, whose parameters can be easily estimated using historical data. Assuming an exponentially affine stochastic discount factor, we obtain a fully analytic change of measure. An empirical analysis of Standard and Poor's 500 index options illustrates that our model outperforms competing time-varying and stochastic volatility option pricing models.\",\"PeriodicalId\":170638,\"journal\":{\"name\":\"Johns Hopkins Carey Business School Research Paper Series\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"112\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Johns Hopkins Carey Business School Research Paper Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1547032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Johns Hopkins Carey Business School Research Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1547032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 112

摘要

我们开发了一个离散时间随机波动率期权定价模型,利用已实现波动率(RV)中包含的信息,它被用作不可观察对数收益波动率的代理。我们通过一个简单有效的长记忆过程来建模RV动力学,该过程的参数可以很容易地使用历史数据来估计。假设一个指数仿射随机折现因子,我们得到了测度的完全解析变化。对标准普尔500指数期权的实证分析表明,我们的模型优于与之竞争的时变和随机波动期权定价模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Realizing Smiles: Options Pricing with Realized Volatility
We develop a discrete-time stochastic volatility option pricing model exploiting the information contained in the Realized Volatility (RV), which is used as a proxy of the unobservable log-return volatility. We model the RV dynamics by a simple and effective long-memory process, whose parameters can be easily estimated using historical data. Assuming an exponentially affine stochastic discount factor, we obtain a fully analytic change of measure. An empirical analysis of Standard and Poor's 500 index options illustrates that our model outperforms competing time-varying and stochastic volatility option pricing models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信