M. Nevrkla, A. Jancarek, F. Nawaz, T. Parkman, M. Vrbova
{"title":"氮螯合z毛细管放电的时间分辨EUV光谱","authors":"M. Nevrkla, A. Jancarek, F. Nawaz, T. Parkman, M. Vrbova","doi":"10.1117/12.2196905","DOIUrl":null,"url":null,"abstract":"Time-integrated spectra and time-resolved spectra (20 ns resolution) of nitrogen discharge plasma radiation were recorded and analyzed. Plasma was created by a 70 kA, 29 ns rise-time current pulse flowing through a 5 mm inner diameter, 224 mm long capillary filled with nitrogen to initial pressure ∼0.1 ÷ 1 kPa. Spectra were captured in the wavelength range 8.3 ÷ 14 nm. This spectral region contains nitrogen Balmer series lines including potentially lasing NVII 2 – 3 transition1. Spectral lines were identified using the NIST database and the FLY kinetic code. Together with spectra the capillary current was measured. Due to the low inductance design of the driver, the pinch is observable directly from the measured current. 13.38 nm NVII 2 – 3 line was observed in gated, and also in time-integrated spectra for currents <60 kA. For higher gas-filling pressure also other Balmer series lines were observed.","PeriodicalId":347374,"journal":{"name":"Europe Optics + Optoelectronics","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Time-resolved EUV spectra from nitrogen Z-pinching capillary discharge\",\"authors\":\"M. Nevrkla, A. Jancarek, F. Nawaz, T. Parkman, M. Vrbova\",\"doi\":\"10.1117/12.2196905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time-integrated spectra and time-resolved spectra (20 ns resolution) of nitrogen discharge plasma radiation were recorded and analyzed. Plasma was created by a 70 kA, 29 ns rise-time current pulse flowing through a 5 mm inner diameter, 224 mm long capillary filled with nitrogen to initial pressure ∼0.1 ÷ 1 kPa. Spectra were captured in the wavelength range 8.3 ÷ 14 nm. This spectral region contains nitrogen Balmer series lines including potentially lasing NVII 2 – 3 transition1. Spectral lines were identified using the NIST database and the FLY kinetic code. Together with spectra the capillary current was measured. Due to the low inductance design of the driver, the pinch is observable directly from the measured current. 13.38 nm NVII 2 – 3 line was observed in gated, and also in time-integrated spectra for currents <60 kA. For higher gas-filling pressure also other Balmer series lines were observed.\",\"PeriodicalId\":347374,\"journal\":{\"name\":\"Europe Optics + Optoelectronics\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Europe Optics + Optoelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2196905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Europe Optics + Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2196905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Time-resolved EUV spectra from nitrogen Z-pinching capillary discharge
Time-integrated spectra and time-resolved spectra (20 ns resolution) of nitrogen discharge plasma radiation were recorded and analyzed. Plasma was created by a 70 kA, 29 ns rise-time current pulse flowing through a 5 mm inner diameter, 224 mm long capillary filled with nitrogen to initial pressure ∼0.1 ÷ 1 kPa. Spectra were captured in the wavelength range 8.3 ÷ 14 nm. This spectral region contains nitrogen Balmer series lines including potentially lasing NVII 2 – 3 transition1. Spectral lines were identified using the NIST database and the FLY kinetic code. Together with spectra the capillary current was measured. Due to the low inductance design of the driver, the pinch is observable directly from the measured current. 13.38 nm NVII 2 – 3 line was observed in gated, and also in time-integrated spectra for currents <60 kA. For higher gas-filling pressure also other Balmer series lines were observed.