{"title":"一种适用于25kv电气化铁路的多电平混合补偿系统","authors":"P. Tan, P. Loh, D. G. Holmes","doi":"10.1109/PESC.2003.1216590","DOIUrl":null,"url":null,"abstract":"On many electrified railway systems with single-phase 25 kV industrial frequency supply, the power quality can be particularly poor when conventional SCR-based locomotives are operating, and this constrains the amount of power that can be delivered to the locomotives. This paper presents a shunt compensation system consisting of alternatively a cascaded or a reduced topology multilevel active power filter, and a low rating damping filter. The active filter is controlled by a novel hysteresis current regulation strategy, and both mitigate low order voltage harmonic distortion along the feeder and provides RMS voltage support. The passive filter damps harmonic resonances that are typical in such 25 kV traction systems. The results show that the filter system can significantly increase traction system power transfer capacity with only a relatively small capital investment, allowing older thyristor based locomotives and increased traffic levels to be supported without necessarily requiring a complete system upgrade. Simulation and experimental results are included showing the performance of the filter for both steady state and transient conditions.","PeriodicalId":236199,"journal":{"name":"IEEE 34th Annual Conference on Power Electronics Specialist, 2003. PESC '03.","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"A robust multilevel hybrid compensation system for 25 kV electrified railway applications\",\"authors\":\"P. Tan, P. Loh, D. G. Holmes\",\"doi\":\"10.1109/PESC.2003.1216590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On many electrified railway systems with single-phase 25 kV industrial frequency supply, the power quality can be particularly poor when conventional SCR-based locomotives are operating, and this constrains the amount of power that can be delivered to the locomotives. This paper presents a shunt compensation system consisting of alternatively a cascaded or a reduced topology multilevel active power filter, and a low rating damping filter. The active filter is controlled by a novel hysteresis current regulation strategy, and both mitigate low order voltage harmonic distortion along the feeder and provides RMS voltage support. The passive filter damps harmonic resonances that are typical in such 25 kV traction systems. The results show that the filter system can significantly increase traction system power transfer capacity with only a relatively small capital investment, allowing older thyristor based locomotives and increased traffic levels to be supported without necessarily requiring a complete system upgrade. Simulation and experimental results are included showing the performance of the filter for both steady state and transient conditions.\",\"PeriodicalId\":236199,\"journal\":{\"name\":\"IEEE 34th Annual Conference on Power Electronics Specialist, 2003. PESC '03.\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE 34th Annual Conference on Power Electronics Specialist, 2003. PESC '03.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PESC.2003.1216590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE 34th Annual Conference on Power Electronics Specialist, 2003. PESC '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESC.2003.1216590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A robust multilevel hybrid compensation system for 25 kV electrified railway applications
On many electrified railway systems with single-phase 25 kV industrial frequency supply, the power quality can be particularly poor when conventional SCR-based locomotives are operating, and this constrains the amount of power that can be delivered to the locomotives. This paper presents a shunt compensation system consisting of alternatively a cascaded or a reduced topology multilevel active power filter, and a low rating damping filter. The active filter is controlled by a novel hysteresis current regulation strategy, and both mitigate low order voltage harmonic distortion along the feeder and provides RMS voltage support. The passive filter damps harmonic resonances that are typical in such 25 kV traction systems. The results show that the filter system can significantly increase traction system power transfer capacity with only a relatively small capital investment, allowing older thyristor based locomotives and increased traffic levels to be supported without necessarily requiring a complete system upgrade. Simulation and experimental results are included showing the performance of the filter for both steady state and transient conditions.