一种容错可伸缩视频编码的统一估计理论框架

Jingning Han, Vinay Melkote, K. Rose
{"title":"一种容错可伸缩视频编码的统一估计理论框架","authors":"Jingning Han, Vinay Melkote, K. Rose","doi":"10.1109/ICME.2012.76","DOIUrl":null,"url":null,"abstract":"A novel scalable video coding (SVC) scheme is proposed for video transmission over loss networks, which builds on an estimation-theoretic (ET) framework for optimal prediction and error concealment, given all available information from both the current base layer and prior enhancement layer frames. It incorporates a recursive end-to-end distortion estimation technique, namely, the spectral coefficient-wise optimal recursive estimate (SCORE), which accounts for all ET operations and tracks the first and second moments of decoder reconstructed transform coefficients. The overall framework enables optimization of ET-SVC systems for transmission over lossy networks, while accounting for all relevant conditions including the effects of quantization, channel loss, concealment, and error propagation. It thus resolves longstanding difficulties in combining truly optimal prediction and concealment with optimal end-to-end distortion and error-resilient SVC coding decisions. Experiments demonstrate that the proposed scheme offers substantial performance gains over existing error-resilient SVC systems, under a wide range of packet loss and bit rates.","PeriodicalId":273567,"journal":{"name":"2012 IEEE International Conference on Multimedia and Expo","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Unified Estimation-Theoretic Framework for Error-Resilient Scalable Video Coding\",\"authors\":\"Jingning Han, Vinay Melkote, K. Rose\",\"doi\":\"10.1109/ICME.2012.76\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel scalable video coding (SVC) scheme is proposed for video transmission over loss networks, which builds on an estimation-theoretic (ET) framework for optimal prediction and error concealment, given all available information from both the current base layer and prior enhancement layer frames. It incorporates a recursive end-to-end distortion estimation technique, namely, the spectral coefficient-wise optimal recursive estimate (SCORE), which accounts for all ET operations and tracks the first and second moments of decoder reconstructed transform coefficients. The overall framework enables optimization of ET-SVC systems for transmission over lossy networks, while accounting for all relevant conditions including the effects of quantization, channel loss, concealment, and error propagation. It thus resolves longstanding difficulties in combining truly optimal prediction and concealment with optimal end-to-end distortion and error-resilient SVC coding decisions. Experiments demonstrate that the proposed scheme offers substantial performance gains over existing error-resilient SVC systems, under a wide range of packet loss and bit rates.\",\"PeriodicalId\":273567,\"journal\":{\"name\":\"2012 IEEE International Conference on Multimedia and Expo\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Multimedia and Expo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2012.76\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2012.76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种新的可扩展视频编码(SVC)方案,该方案建立在估计理论(ET)框架的基础上,在给定当前基础层和先前增强层帧的所有可用信息的情况下,实现最优预测和错误隐藏。它结合了递归端到端失真估计技术,即频谱系数最优递归估计(SCORE),它考虑了所有ET操作并跟踪解码器重构变换系数的第一和第二矩。整体框架能够优化ET-SVC系统在有损网络上的传输,同时考虑到所有相关条件,包括量化、信道损耗、隐藏和错误传播的影响。因此,它解决了将真正最优的预测和隐藏与最优的端到端失真和抗错误SVC编码决策相结合的长期困难。实验表明,在大范围的丢包率和比特率下,该方案比现有的抗错误SVC系统提供了显著的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Unified Estimation-Theoretic Framework for Error-Resilient Scalable Video Coding
A novel scalable video coding (SVC) scheme is proposed for video transmission over loss networks, which builds on an estimation-theoretic (ET) framework for optimal prediction and error concealment, given all available information from both the current base layer and prior enhancement layer frames. It incorporates a recursive end-to-end distortion estimation technique, namely, the spectral coefficient-wise optimal recursive estimate (SCORE), which accounts for all ET operations and tracks the first and second moments of decoder reconstructed transform coefficients. The overall framework enables optimization of ET-SVC systems for transmission over lossy networks, while accounting for all relevant conditions including the effects of quantization, channel loss, concealment, and error propagation. It thus resolves longstanding difficulties in combining truly optimal prediction and concealment with optimal end-to-end distortion and error-resilient SVC coding decisions. Experiments demonstrate that the proposed scheme offers substantial performance gains over existing error-resilient SVC systems, under a wide range of packet loss and bit rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信