正半定矩阵上的仿射过程

Christa Cuchiero, D. Filipović, E. Mayerhofer, J. Teichmann
{"title":"正半定矩阵上的仿射过程","authors":"Christa Cuchiero, D. Filipović, E. Mayerhofer, J. Teichmann","doi":"10.1214/10-AAP710","DOIUrl":null,"url":null,"abstract":"This article provides the mathematical foundation for stochastically continuous affine processes on the cone of positive semidefinite symmetric matrices. This analysis has been motivated by a large and growing use of matrix-valued affine processes in finance, including multi-asset option pricing with stochastic volatility and correlation structures, and fixed-income models with stochastically correlated risk factors and default intensities.","PeriodicalId":384078,"journal":{"name":"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"166","resultStr":"{\"title\":\"Affine Processes on Positive Semidefinite Matrices\",\"authors\":\"Christa Cuchiero, D. Filipović, E. Mayerhofer, J. Teichmann\",\"doi\":\"10.1214/10-AAP710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article provides the mathematical foundation for stochastically continuous affine processes on the cone of positive semidefinite symmetric matrices. This analysis has been motivated by a large and growing use of matrix-valued affine processes in finance, including multi-asset option pricing with stochastic volatility and correlation structures, and fixed-income models with stochastically correlated risk factors and default intensities.\",\"PeriodicalId\":384078,\"journal\":{\"name\":\"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"166\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/10-AAP710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/10-AAP710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 166

摘要

本文为正半定对称矩阵锥上的随机连续仿射过程提供了数学基础。这种分析的动机是在金融中越来越多地使用矩阵值仿射过程,包括具有随机波动率和相关结构的多资产期权定价,以及具有随机相关风险因素和违约强度的固定收益模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Affine Processes on Positive Semidefinite Matrices
This article provides the mathematical foundation for stochastically continuous affine processes on the cone of positive semidefinite symmetric matrices. This analysis has been motivated by a large and growing use of matrix-valued affine processes in finance, including multi-asset option pricing with stochastic volatility and correlation structures, and fixed-income models with stochastically correlated risk factors and default intensities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信