关于多项式和有理函数的加法和Frobenius映射的可判定性的注释

D. Chompitaki, Manos N. Kamarianakis, T. Pheidas
{"title":"关于多项式和有理函数的加法和Frobenius映射的可判定性的注释","authors":"D. Chompitaki, Manos N. Kamarianakis, T. Pheidas","doi":"10.4467/20842589rm.22.004.16661","DOIUrl":null,"url":null,"abstract":"Let pbe a prime number, Fp a finite field with pelements, Fan algebraic extension of Fp and z a variable. We consider the structure of addition and the Frobenius map (i.e., x →xp) in the polynomial rings F[z] and in fields F(z) of rational functions. We prove that any question about F[z] in the structure of addition and Frobenius map may be effectively reduced to questions about the similar structure of the field F. Furthermore, we provide an example which shows that a fact which is true for addition and the Frobenius map in the polynomial rings F[z] fails to be true in F(z). As a consequence, certain methods used to prove model completeness for polynomials do not suffice to prove model completeness for similar structures for fields of rational functions F(z), a problem that remains open even for F= Fp.","PeriodicalId":447333,"journal":{"name":"Reports Math. Log.","volume":"73 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Notes on the decidability of addition and the Frobenius map for polynomials and rational functions\",\"authors\":\"D. Chompitaki, Manos N. Kamarianakis, T. Pheidas\",\"doi\":\"10.4467/20842589rm.22.004.16661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let pbe a prime number, Fp a finite field with pelements, Fan algebraic extension of Fp and z a variable. We consider the structure of addition and the Frobenius map (i.e., x →xp) in the polynomial rings F[z] and in fields F(z) of rational functions. We prove that any question about F[z] in the structure of addition and Frobenius map may be effectively reduced to questions about the similar structure of the field F. Furthermore, we provide an example which shows that a fact which is true for addition and the Frobenius map in the polynomial rings F[z] fails to be true in F(z). As a consequence, certain methods used to prove model completeness for polynomials do not suffice to prove model completeness for similar structures for fields of rational functions F(z), a problem that remains open even for F= Fp.\",\"PeriodicalId\":447333,\"journal\":{\"name\":\"Reports Math. Log.\",\"volume\":\"73 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports Math. Log.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4467/20842589rm.22.004.16661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports Math. Log.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4467/20842589rm.22.004.16661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设p1为素数,Fp为带元素的有限域,对Fp进行代数推广,z为变量。研究了有理函数的多项式环F[z]和域F(z)中的加法和Frobenius映射(即x→xp)的结构。我们证明了关于加法和Frobenius映射结构中的F[z]的任何问题都可以有效地简化为关于域F的类似结构的问题。此外,我们还提供了一个例子,证明了对于多项式环F[z]中的加法和Frobenius映射成立的事实在F(z)中不成立。因此,用于证明多项式模型完备性的某些方法不足以证明有理函数F(z)域的类似结构的模型完备性,这个问题即使对于F= Fp也是开放的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Notes on the decidability of addition and the Frobenius map for polynomials and rational functions
Let pbe a prime number, Fp a finite field with pelements, Fan algebraic extension of Fp and z a variable. We consider the structure of addition and the Frobenius map (i.e., x →xp) in the polynomial rings F[z] and in fields F(z) of rational functions. We prove that any question about F[z] in the structure of addition and Frobenius map may be effectively reduced to questions about the similar structure of the field F. Furthermore, we provide an example which shows that a fact which is true for addition and the Frobenius map in the polynomial rings F[z] fails to be true in F(z). As a consequence, certain methods used to prove model completeness for polynomials do not suffice to prove model completeness for similar structures for fields of rational functions F(z), a problem that remains open even for F= Fp.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信