基于数据驱动波束训练优化的快速毫米波基站发现

Ziying Wang, Chunshan Liu, Lou Zhao, Min Li
{"title":"基于数据驱动波束训练优化的快速毫米波基站发现","authors":"Ziying Wang, Chunshan Liu, Lou Zhao, Min Li","doi":"10.1109/ISWCS56560.2022.9940338","DOIUrl":null,"url":null,"abstract":"Millimeter-Wave (mm-wave) communications is an important element of 5G. Due to the high propagation loss of mm-wave signals, directional transmissions are required even in the initial access (IA), where the base station (BS) needs to broadcast the reference signals with beamforming to reach sufficient coverage ranges. Sequential scanning with narrow beams at the BS, without considering the non-uniform distribution of user equipment (UE) in the angular space, may lead to long IA delay at UEs. To reduce the IA delay, we propose a data-driven approach that learns the spatial distribution of UEs from the historical channels of UEs served by the BS and a beam identification method based on density-based spatial clustering of applications with noise (DBSCAN) to find the optimized set of beams to match to the distribution of the UEs. Two time resource allocation strategies are then investigated to evaluate the performance of IA based on the optimized beam set identified according to the UE distribution. Numerical results via realistic ray-tracing experiments demonstrate the performance improvement of the proposed approach over sequential beam training and omnidirectional training.","PeriodicalId":141258,"journal":{"name":"2022 International Symposium on Wireless Communication Systems (ISWCS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast Millimeter-Wave Base Station Discovery via Data-driven Beam Training Optimization\",\"authors\":\"Ziying Wang, Chunshan Liu, Lou Zhao, Min Li\",\"doi\":\"10.1109/ISWCS56560.2022.9940338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Millimeter-Wave (mm-wave) communications is an important element of 5G. Due to the high propagation loss of mm-wave signals, directional transmissions are required even in the initial access (IA), where the base station (BS) needs to broadcast the reference signals with beamforming to reach sufficient coverage ranges. Sequential scanning with narrow beams at the BS, without considering the non-uniform distribution of user equipment (UE) in the angular space, may lead to long IA delay at UEs. To reduce the IA delay, we propose a data-driven approach that learns the spatial distribution of UEs from the historical channels of UEs served by the BS and a beam identification method based on density-based spatial clustering of applications with noise (DBSCAN) to find the optimized set of beams to match to the distribution of the UEs. Two time resource allocation strategies are then investigated to evaluate the performance of IA based on the optimized beam set identified according to the UE distribution. Numerical results via realistic ray-tracing experiments demonstrate the performance improvement of the proposed approach over sequential beam training and omnidirectional training.\",\"PeriodicalId\":141258,\"journal\":{\"name\":\"2022 International Symposium on Wireless Communication Systems (ISWCS)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Symposium on Wireless Communication Systems (ISWCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISWCS56560.2022.9940338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Wireless Communication Systems (ISWCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWCS56560.2022.9940338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

毫米波通信是5G的重要组成部分。由于毫米波信号的高传播损耗,即使在初始接入(IA)中也需要进行定向传输,基站(BS)需要通过波束形成广播参考信号以达到足够的覆盖范围。在终端处使用窄波束进行顺序扫描,不考虑用户设备在角空间中的不均匀分布,可能导致终端处IA延迟过长。为了减少IA延迟,我们提出了一种数据驱动的方法,该方法从BS所服务的ue的历史信道中学习ue的空间分布,并提出了一种基于带噪声应用的基于密度的空间聚类(DBSCAN)的波束识别方法,以找到与ue分布匹配的最佳波束集。然后研究了两种时间资源分配策略,基于根据UE分布确定的优化波束集来评估IA的性能。真实光线追踪实验的数值结果表明,该方法比序列训练和全向训练的性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Millimeter-Wave Base Station Discovery via Data-driven Beam Training Optimization
Millimeter-Wave (mm-wave) communications is an important element of 5G. Due to the high propagation loss of mm-wave signals, directional transmissions are required even in the initial access (IA), where the base station (BS) needs to broadcast the reference signals with beamforming to reach sufficient coverage ranges. Sequential scanning with narrow beams at the BS, without considering the non-uniform distribution of user equipment (UE) in the angular space, may lead to long IA delay at UEs. To reduce the IA delay, we propose a data-driven approach that learns the spatial distribution of UEs from the historical channels of UEs served by the BS and a beam identification method based on density-based spatial clustering of applications with noise (DBSCAN) to find the optimized set of beams to match to the distribution of the UEs. Two time resource allocation strategies are then investigated to evaluate the performance of IA based on the optimized beam set identified according to the UE distribution. Numerical results via realistic ray-tracing experiments demonstrate the performance improvement of the proposed approach over sequential beam training and omnidirectional training.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信