Oliver Brdiczka, P. Yuen, Sofia Zaidenberg, P. Reignier, J. Crowley
{"title":"上下文模型的自动获取及其在视频监控中的应用","authors":"Oliver Brdiczka, P. Yuen, Sofia Zaidenberg, P. Reignier, J. Crowley","doi":"10.1109/ICPR.2006.292","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of automatically acquiring context models from data. Context and human behavior are represented using a state model, called situation model. This model consists of different layers referring to entities, filters, roles, relations, situation and situation relationship. We propose a framework for the automatic acquisition of these different layers. In particular, this paper proposes a novel generic situation acquisition algorithm. The algorithm is also successfully applied to a video surveillance task and is evaluated by the public CAVIAR video database. The results are encouraging","PeriodicalId":236033,"journal":{"name":"18th International Conference on Pattern Recognition (ICPR'06)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Automatic Acquisition of Context Models and its Application to Video Surveillance\",\"authors\":\"Oliver Brdiczka, P. Yuen, Sofia Zaidenberg, P. Reignier, J. Crowley\",\"doi\":\"10.1109/ICPR.2006.292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of automatically acquiring context models from data. Context and human behavior are represented using a state model, called situation model. This model consists of different layers referring to entities, filters, roles, relations, situation and situation relationship. We propose a framework for the automatic acquisition of these different layers. In particular, this paper proposes a novel generic situation acquisition algorithm. The algorithm is also successfully applied to a video surveillance task and is evaluated by the public CAVIAR video database. The results are encouraging\",\"PeriodicalId\":236033,\"journal\":{\"name\":\"18th International Conference on Pattern Recognition (ICPR'06)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th International Conference on Pattern Recognition (ICPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2006.292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference on Pattern Recognition (ICPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2006.292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic Acquisition of Context Models and its Application to Video Surveillance
This paper addresses the problem of automatically acquiring context models from data. Context and human behavior are represented using a state model, called situation model. This model consists of different layers referring to entities, filters, roles, relations, situation and situation relationship. We propose a framework for the automatic acquisition of these different layers. In particular, this paper proposes a novel generic situation acquisition algorithm. The algorithm is also successfully applied to a video surveillance task and is evaluated by the public CAVIAR video database. The results are encouraging