在线控制系统的神经模糊模型

Sergey M. Morozov, M. Kupriyanov
{"title":"在线控制系统的神经模糊模型","authors":"Sergey M. Morozov, M. Kupriyanov","doi":"10.1109/scm55405.2022.9794864","DOIUrl":null,"url":null,"abstract":"Embedded systems development is a very important area. Devices must provide specific electrical signals. In-circuit control system is able to increase the quality of output or in-circuit signals, which is essential for devices in specific areas. Neuro-fuzzy systems provide an intellectual baseline for developing effective subsystems for signals’ control. Neuro-fizzy model for establishing in-circuit control is provided.","PeriodicalId":162457,"journal":{"name":"2022 XXV International Conference on Soft Computing and Measurements (SCM)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuro-fuzzy Model for In-circuit Control Systems\",\"authors\":\"Sergey M. Morozov, M. Kupriyanov\",\"doi\":\"10.1109/scm55405.2022.9794864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Embedded systems development is a very important area. Devices must provide specific electrical signals. In-circuit control system is able to increase the quality of output or in-circuit signals, which is essential for devices in specific areas. Neuro-fuzzy systems provide an intellectual baseline for developing effective subsystems for signals’ control. Neuro-fizzy model for establishing in-circuit control is provided.\",\"PeriodicalId\":162457,\"journal\":{\"name\":\"2022 XXV International Conference on Soft Computing and Measurements (SCM)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 XXV International Conference on Soft Computing and Measurements (SCM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/scm55405.2022.9794864\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 XXV International Conference on Soft Computing and Measurements (SCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/scm55405.2022.9794864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

嵌入式系统开发是一个非常重要的领域。设备必须提供特定的电信号。在线控制系统能够提高输出或在线信号的质量,这对于特定领域的设备是必不可少的。神经模糊系统为开发有效的信号控制子系统提供了智能基线。给出了建立在线控制的神经气泡模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neuro-fuzzy Model for In-circuit Control Systems
Embedded systems development is a very important area. Devices must provide specific electrical signals. In-circuit control system is able to increase the quality of output or in-circuit signals, which is essential for devices in specific areas. Neuro-fuzzy systems provide an intellectual baseline for developing effective subsystems for signals’ control. Neuro-fizzy model for establishing in-circuit control is provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信