基于问卷回答的自然语言处理人格预测

Atharva Pansare, Prabhat Panwar, Pranali K. Kosamkar
{"title":"基于问卷回答的自然语言处理人格预测","authors":"Atharva Pansare, Prabhat Panwar, Pranali K. Kosamkar","doi":"10.1109/PuneCon55413.2022.10014939","DOIUrl":null,"url":null,"abstract":"As the modern IT revolution is booming at a rapid growth speed, organizations and recruiters are finding it increasingly challenging to select the ideal applicant from a large number of applicants with diverse skill sets and personalities. Hence, selecting a candidate with a suitable personality for respective job profiles is a very important and great challenge for the HR department nowadays. Out of various personality prediction methods available out there, Myers-Briggs Type Indicator or MBTI is famous and accurate for our purpose of creating a personality prediction system for selecting candidates based on their personality. This study took into account all sixteen MB-Model coordinates. A comparative study of Random Forest, Logistic Regression, SVM, XGBoost has been done to perform personality prediction, and accuracy and confusion matrix for performance measurement of the models. While using TF-IDF, for the personality categories like Introversion/Extroversion the accuracy is 80.46%, for Sensing/Intuition it is 88.70%, for Thinking/Feeling it is 81.21% and for Perceiving vs Judging it is 72.97% with the Logistic Regression algorithm. Using Count vectorization for tokenizing, the accuracy is 80.97% for Introversion/Extroversion, for Sensing/Intuition it is 88.93%, for Thinking/Feeling it is 77.92% and for Perceiving vs Judging it is 73.48% with XGBoost algorithm, which gave the best performance.","PeriodicalId":258640,"journal":{"name":"2022 IEEE Pune Section International Conference (PuneCon)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Personality Prediction with Natural Language Processing using Questionnaire Responses\",\"authors\":\"Atharva Pansare, Prabhat Panwar, Pranali K. Kosamkar\",\"doi\":\"10.1109/PuneCon55413.2022.10014939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the modern IT revolution is booming at a rapid growth speed, organizations and recruiters are finding it increasingly challenging to select the ideal applicant from a large number of applicants with diverse skill sets and personalities. Hence, selecting a candidate with a suitable personality for respective job profiles is a very important and great challenge for the HR department nowadays. Out of various personality prediction methods available out there, Myers-Briggs Type Indicator or MBTI is famous and accurate for our purpose of creating a personality prediction system for selecting candidates based on their personality. This study took into account all sixteen MB-Model coordinates. A comparative study of Random Forest, Logistic Regression, SVM, XGBoost has been done to perform personality prediction, and accuracy and confusion matrix for performance measurement of the models. While using TF-IDF, for the personality categories like Introversion/Extroversion the accuracy is 80.46%, for Sensing/Intuition it is 88.70%, for Thinking/Feeling it is 81.21% and for Perceiving vs Judging it is 72.97% with the Logistic Regression algorithm. Using Count vectorization for tokenizing, the accuracy is 80.97% for Introversion/Extroversion, for Sensing/Intuition it is 88.93%, for Thinking/Feeling it is 77.92% and for Perceiving vs Judging it is 73.48% with XGBoost algorithm, which gave the best performance.\",\"PeriodicalId\":258640,\"journal\":{\"name\":\"2022 IEEE Pune Section International Conference (PuneCon)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Pune Section International Conference (PuneCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PuneCon55413.2022.10014939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Pune Section International Conference (PuneCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PuneCon55413.2022.10014939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着现代IT革命的快速发展,组织和招聘人员发现从大量具有不同技能和个性的申请人中选择理想的申请人越来越具有挑战性。因此,为各自的岗位选择合适的候选人是当今人力资源部门面临的一个非常重要和巨大的挑战。在各种可用的人格预测方法中,迈尔斯-布里格斯类型指标或MBTI是著名的和准确的,因为我们的目的是创建一个人格预测系统,根据他们的性格来选择候选人。本研究考虑了所有16个MB-Model坐标。比较研究了随机森林、逻辑回归、支持向量机、XGBoost进行个性预测,并对模型的准确性和混淆矩阵进行了性能度量。在使用TF-IDF时,对于性格类别,如内向/外向,准确率为80.46%,对于感觉/直觉,准确率为88.70%,对于思考/感觉,准确率为81.21%,对于感知和判断,使用逻辑回归算法的准确率为72.97%。使用计数矢量化进行分词,内倾/外向分词准确率为80.97%,感知/直觉分词准确率为88.93%,思考/感觉分词准确率为77.92%,感知/判断分词准确率为73.48%,XGBoost算法表现最佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Personality Prediction with Natural Language Processing using Questionnaire Responses
As the modern IT revolution is booming at a rapid growth speed, organizations and recruiters are finding it increasingly challenging to select the ideal applicant from a large number of applicants with diverse skill sets and personalities. Hence, selecting a candidate with a suitable personality for respective job profiles is a very important and great challenge for the HR department nowadays. Out of various personality prediction methods available out there, Myers-Briggs Type Indicator or MBTI is famous and accurate for our purpose of creating a personality prediction system for selecting candidates based on their personality. This study took into account all sixteen MB-Model coordinates. A comparative study of Random Forest, Logistic Regression, SVM, XGBoost has been done to perform personality prediction, and accuracy and confusion matrix for performance measurement of the models. While using TF-IDF, for the personality categories like Introversion/Extroversion the accuracy is 80.46%, for Sensing/Intuition it is 88.70%, for Thinking/Feeling it is 81.21% and for Perceiving vs Judging it is 72.97% with the Logistic Regression algorithm. Using Count vectorization for tokenizing, the accuracy is 80.97% for Introversion/Extroversion, for Sensing/Intuition it is 88.93%, for Thinking/Feeling it is 77.92% and for Perceiving vs Judging it is 73.48% with XGBoost algorithm, which gave the best performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信