超塑性挤压的解析理论

Song Yu-quan
{"title":"超塑性挤压的解析理论","authors":"Song Yu-quan","doi":"10.1360/YA1994-37-5-607","DOIUrl":null,"url":null,"abstract":"The forward extrusion through cone-shaped die,which is the basis for establishing the extrusion theory,can be simply considered to be two-dimensional in a spherical coordinates system in its treatment.This paper,for the first time,derives the analytical formulae and constraint equations for strain,strain-rate and stress of superplastic extrusions through cone-shaped die by simulating displacement function.In the present work,typical superplastic alloy Zn-5wt%Al was chosen as the example,so the results are of universal significance.The method can even be generalized to non-typical superplastic materials.","PeriodicalId":256661,"journal":{"name":"Science in China Series A-Mathematics, Physics, Astronomy & Technological Science","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical Theory of Superplastic Extrusion\",\"authors\":\"Song Yu-quan\",\"doi\":\"10.1360/YA1994-37-5-607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The forward extrusion through cone-shaped die,which is the basis for establishing the extrusion theory,can be simply considered to be two-dimensional in a spherical coordinates system in its treatment.This paper,for the first time,derives the analytical formulae and constraint equations for strain,strain-rate and stress of superplastic extrusions through cone-shaped die by simulating displacement function.In the present work,typical superplastic alloy Zn-5wt%Al was chosen as the example,so the results are of universal significance.The method can even be generalized to non-typical superplastic materials.\",\"PeriodicalId\":256661,\"journal\":{\"name\":\"Science in China Series A-Mathematics, Physics, Astronomy & Technological Science\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science in China Series A-Mathematics, Physics, Astronomy & Technological Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1360/YA1994-37-5-607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science in China Series A-Mathematics, Physics, Astronomy & Technological Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1360/YA1994-37-5-607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

锥形模具正挤压是挤压理论建立的基础,在处理时可简单地考虑为球坐标系下的二维。本文首次通过模拟位移函数,导出了锥形模具超塑性挤压件的应变、应变率和应力的解析公式和约束方程。本文以典型的超塑性合金Zn-5wt%Al为例,研究结果具有普遍意义。该方法也可推广到非典型超塑性材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical Theory of Superplastic Extrusion
The forward extrusion through cone-shaped die,which is the basis for establishing the extrusion theory,can be simply considered to be two-dimensional in a spherical coordinates system in its treatment.This paper,for the first time,derives the analytical formulae and constraint equations for strain,strain-rate and stress of superplastic extrusions through cone-shaped die by simulating displacement function.In the present work,typical superplastic alloy Zn-5wt%Al was chosen as the example,so the results are of universal significance.The method can even be generalized to non-typical superplastic materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信