Shiyu Feng, Ziyi Zhou, Justin S. Smith, M. Asselmeier, Ye Zhao, P. Vela
{"title":"GPF-BG:安全四足导航的分层视觉规划框架","authors":"Shiyu Feng, Ziyi Zhou, Justin S. Smith, M. Asselmeier, Ye Zhao, P. Vela","doi":"10.1109/ICRA48891.2023.10160804","DOIUrl":null,"url":null,"abstract":"Safe quadrupedal navigation through unknown environments is a challenging problem. This paper proposes a hierarchical vision-based planning framework (GPF-BG) integrating our previous Global Path Follower (GPF) navigation system and a gap-based local planner using Bézier curves, so called $B$ézier Gap (BG). This BG-based trajectory synthesis can generate smooth trajectories and guarantee safety for point-mass robots. With a gap analysis extension based on non-point, rectangular geometry, safety is guaranteed for an idealized quadrupedal motion model and significantly improved for an actual quadrupedal robot model. Stabilized perception space improves performance under oscillatory internal body motions that impact sensing. Simulation-based and real experiments under different benchmarking configurations test safe navigation performance. GPF-BG has the best safety outcomes across all experiments.","PeriodicalId":360533,"journal":{"name":"2023 IEEE International Conference on Robotics and Automation (ICRA)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"GPF-BG: A Hierarchical Vision-Based Planning Framework for Safe Quadrupedal Navigation\",\"authors\":\"Shiyu Feng, Ziyi Zhou, Justin S. Smith, M. Asselmeier, Ye Zhao, P. Vela\",\"doi\":\"10.1109/ICRA48891.2023.10160804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Safe quadrupedal navigation through unknown environments is a challenging problem. This paper proposes a hierarchical vision-based planning framework (GPF-BG) integrating our previous Global Path Follower (GPF) navigation system and a gap-based local planner using Bézier curves, so called $B$ézier Gap (BG). This BG-based trajectory synthesis can generate smooth trajectories and guarantee safety for point-mass robots. With a gap analysis extension based on non-point, rectangular geometry, safety is guaranteed for an idealized quadrupedal motion model and significantly improved for an actual quadrupedal robot model. Stabilized perception space improves performance under oscillatory internal body motions that impact sensing. Simulation-based and real experiments under different benchmarking configurations test safe navigation performance. GPF-BG has the best safety outcomes across all experiments.\",\"PeriodicalId\":360533,\"journal\":{\"name\":\"2023 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA48891.2023.10160804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48891.2023.10160804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
通过未知环境的安全四足导航是一个具有挑战性的问题。本文提出了一种基于分层视觉的规划框架(GPF-BG),该框架集成了我们之前的全球路径跟随器(GPF)导航系统和基于间隙的使用bsamzier曲线的局部规划器,称为$B$ samzier Gap (BG)。基于bg的轨迹综合可以生成平滑的轨迹,保证了点质量机器人的安全性。通过基于非点矩形几何的间隙分析扩展,理想四足运动模型的安全性得到了保证,实际四足机器人模型的安全性得到了显著提高。稳定的感知空间提高了在振荡的身体内部运动影响下的性能。在不同基准配置下,通过仿真和真实实验测试安全导航性能。GPF-BG在所有实验中具有最佳的安全性结果。
GPF-BG: A Hierarchical Vision-Based Planning Framework for Safe Quadrupedal Navigation
Safe quadrupedal navigation through unknown environments is a challenging problem. This paper proposes a hierarchical vision-based planning framework (GPF-BG) integrating our previous Global Path Follower (GPF) navigation system and a gap-based local planner using Bézier curves, so called $B$ézier Gap (BG). This BG-based trajectory synthesis can generate smooth trajectories and guarantee safety for point-mass robots. With a gap analysis extension based on non-point, rectangular geometry, safety is guaranteed for an idealized quadrupedal motion model and significantly improved for an actual quadrupedal robot model. Stabilized perception space improves performance under oscillatory internal body motions that impact sensing. Simulation-based and real experiments under different benchmarking configurations test safe navigation performance. GPF-BG has the best safety outcomes across all experiments.