GPF-BG:安全四足导航的分层视觉规划框架

Shiyu Feng, Ziyi Zhou, Justin S. Smith, M. Asselmeier, Ye Zhao, P. Vela
{"title":"GPF-BG:安全四足导航的分层视觉规划框架","authors":"Shiyu Feng, Ziyi Zhou, Justin S. Smith, M. Asselmeier, Ye Zhao, P. Vela","doi":"10.1109/ICRA48891.2023.10160804","DOIUrl":null,"url":null,"abstract":"Safe quadrupedal navigation through unknown environments is a challenging problem. This paper proposes a hierarchical vision-based planning framework (GPF-BG) integrating our previous Global Path Follower (GPF) navigation system and a gap-based local planner using Bézier curves, so called $B$ézier Gap (BG). This BG-based trajectory synthesis can generate smooth trajectories and guarantee safety for point-mass robots. With a gap analysis extension based on non-point, rectangular geometry, safety is guaranteed for an idealized quadrupedal motion model and significantly improved for an actual quadrupedal robot model. Stabilized perception space improves performance under oscillatory internal body motions that impact sensing. Simulation-based and real experiments under different benchmarking configurations test safe navigation performance. GPF-BG has the best safety outcomes across all experiments.","PeriodicalId":360533,"journal":{"name":"2023 IEEE International Conference on Robotics and Automation (ICRA)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"GPF-BG: A Hierarchical Vision-Based Planning Framework for Safe Quadrupedal Navigation\",\"authors\":\"Shiyu Feng, Ziyi Zhou, Justin S. Smith, M. Asselmeier, Ye Zhao, P. Vela\",\"doi\":\"10.1109/ICRA48891.2023.10160804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Safe quadrupedal navigation through unknown environments is a challenging problem. This paper proposes a hierarchical vision-based planning framework (GPF-BG) integrating our previous Global Path Follower (GPF) navigation system and a gap-based local planner using Bézier curves, so called $B$ézier Gap (BG). This BG-based trajectory synthesis can generate smooth trajectories and guarantee safety for point-mass robots. With a gap analysis extension based on non-point, rectangular geometry, safety is guaranteed for an idealized quadrupedal motion model and significantly improved for an actual quadrupedal robot model. Stabilized perception space improves performance under oscillatory internal body motions that impact sensing. Simulation-based and real experiments under different benchmarking configurations test safe navigation performance. GPF-BG has the best safety outcomes across all experiments.\",\"PeriodicalId\":360533,\"journal\":{\"name\":\"2023 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA48891.2023.10160804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48891.2023.10160804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

通过未知环境的安全四足导航是一个具有挑战性的问题。本文提出了一种基于分层视觉的规划框架(GPF-BG),该框架集成了我们之前的全球路径跟随器(GPF)导航系统和基于间隙的使用bsamzier曲线的局部规划器,称为$B$ samzier Gap (BG)。基于bg的轨迹综合可以生成平滑的轨迹,保证了点质量机器人的安全性。通过基于非点矩形几何的间隙分析扩展,理想四足运动模型的安全性得到了保证,实际四足机器人模型的安全性得到了显著提高。稳定的感知空间提高了在振荡的身体内部运动影响下的性能。在不同基准配置下,通过仿真和真实实验测试安全导航性能。GPF-BG在所有实验中具有最佳的安全性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GPF-BG: A Hierarchical Vision-Based Planning Framework for Safe Quadrupedal Navigation
Safe quadrupedal navigation through unknown environments is a challenging problem. This paper proposes a hierarchical vision-based planning framework (GPF-BG) integrating our previous Global Path Follower (GPF) navigation system and a gap-based local planner using Bézier curves, so called $B$ézier Gap (BG). This BG-based trajectory synthesis can generate smooth trajectories and guarantee safety for point-mass robots. With a gap analysis extension based on non-point, rectangular geometry, safety is guaranteed for an idealized quadrupedal motion model and significantly improved for an actual quadrupedal robot model. Stabilized perception space improves performance under oscillatory internal body motions that impact sensing. Simulation-based and real experiments under different benchmarking configurations test safe navigation performance. GPF-BG has the best safety outcomes across all experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信