气动隔振器的性能分析与实验验证

Yuanyuan Yang, Jiubin Tan, Lei Wang, Tong Zhou
{"title":"气动隔振器的性能分析与实验验证","authors":"Yuanyuan Yang, Jiubin Tan, Lei Wang, Tong Zhou","doi":"10.1117/12.2181188","DOIUrl":null,"url":null,"abstract":"A performance analysis and experiment validation of a pneumatic vibration isolator (PVI) that applied in the wafer stage of lithography is proposed in this work. The wafer stage of lithography is a dual-stage actuator system, including a long-stroke stage (LS) and a short-stroke stage (SS). In order to achieve the nanometer level positioning the isolator is designed to reduce the transmission of LS excitations to SS. In addition, considering the SS with six degrees of freedom and required to keep a strict constant temperature environment, the isolator need to have two functions, including the decoupling for vertical to horizontal and gravity compensation. In this isolator, a biaxial hinge was designed to decouple vertical rotation freedom, and a gas bearing was designed to decouple horizontal motion. The stiffness and damping of the pneumatic vibration isolator were analyzed. Besides, an analysis of the natural frequency and vibration transmissibility of the isolator is presented. In the end, the results show that vibration transmission is reduced significantly by the isolator and natural frequency can be lower than 0.6 Hz. This means that experimental results accord with the prediction model.","PeriodicalId":380636,"journal":{"name":"Precision Engineering Measurements and Instrumentation","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance analysis and experiment validation of a pneumatic vibration isolator\",\"authors\":\"Yuanyuan Yang, Jiubin Tan, Lei Wang, Tong Zhou\",\"doi\":\"10.1117/12.2181188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A performance analysis and experiment validation of a pneumatic vibration isolator (PVI) that applied in the wafer stage of lithography is proposed in this work. The wafer stage of lithography is a dual-stage actuator system, including a long-stroke stage (LS) and a short-stroke stage (SS). In order to achieve the nanometer level positioning the isolator is designed to reduce the transmission of LS excitations to SS. In addition, considering the SS with six degrees of freedom and required to keep a strict constant temperature environment, the isolator need to have two functions, including the decoupling for vertical to horizontal and gravity compensation. In this isolator, a biaxial hinge was designed to decouple vertical rotation freedom, and a gas bearing was designed to decouple horizontal motion. The stiffness and damping of the pneumatic vibration isolator were analyzed. Besides, an analysis of the natural frequency and vibration transmissibility of the isolator is presented. In the end, the results show that vibration transmission is reduced significantly by the isolator and natural frequency can be lower than 0.6 Hz. This means that experimental results accord with the prediction model.\",\"PeriodicalId\":380636,\"journal\":{\"name\":\"Precision Engineering Measurements and Instrumentation\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Engineering Measurements and Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2181188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering Measurements and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2181188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种用于光刻晶圆阶段的气动隔振器(PVI)的性能分析和实验验证。光刻晶圆工作台是一个双级执行器系统,包括一个长行程工作台和一个短行程工作台。为了实现纳米级的定位,设计了隔离器,以减少LS激励对SS的传输。此外,考虑到SS具有六自由度,并且需要保持严格的恒温环境,隔离器需要具有垂直到水平的解耦和重力补偿两种功能。在该隔离器中,设计了双轴铰链来解耦垂直旋转自由,设计了气体轴承来解耦水平运动。对气动隔振器的刚度和阻尼进行了分析。此外,还分析了隔振器的固有频率和振动传递率。结果表明:隔振器显著降低了振动传递,固有频率可低于0.6 Hz。这意味着实验结果与预测模型相符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance analysis and experiment validation of a pneumatic vibration isolator
A performance analysis and experiment validation of a pneumatic vibration isolator (PVI) that applied in the wafer stage of lithography is proposed in this work. The wafer stage of lithography is a dual-stage actuator system, including a long-stroke stage (LS) and a short-stroke stage (SS). In order to achieve the nanometer level positioning the isolator is designed to reduce the transmission of LS excitations to SS. In addition, considering the SS with six degrees of freedom and required to keep a strict constant temperature environment, the isolator need to have two functions, including the decoupling for vertical to horizontal and gravity compensation. In this isolator, a biaxial hinge was designed to decouple vertical rotation freedom, and a gas bearing was designed to decouple horizontal motion. The stiffness and damping of the pneumatic vibration isolator were analyzed. Besides, an analysis of the natural frequency and vibration transmissibility of the isolator is presented. In the end, the results show that vibration transmission is reduced significantly by the isolator and natural frequency can be lower than 0.6 Hz. This means that experimental results accord with the prediction model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信