异步可分解SWN的性能评估:实现与案例研究

C. Delamare, Y. Gardan, P. Moreaux
{"title":"异步可分解SWN的性能评估:实现与案例研究","authors":"C. Delamare, Y. Gardan, P. Moreaux","doi":"10.1109/PNPM.2003.1231539","DOIUrl":null,"url":null,"abstract":"Modern systems involve more and more complex interactions leading to very large models. In the area of Stochastic Petri Nets, standard approaches are to use High Level Stochastic Petri Nets and/or some kind of compositionality to cope with this increasing complexity. In this paper we present an experimental implementation of the asynchronous decomposition method for Stochastic Well formed Nets (SWN), a class of Stochastic High level Petri nets. The method combines the Multi-valued Decision Diagram methods for structured Markov chains with the theoretical results for decomposable SWN. This implementation allows us to compute performance indices for very large and very symmetric systems. We apply our tool to the analysis of a complex Manufacturing System.","PeriodicalId":134699,"journal":{"name":"10th International Workshop on Petri Nets and Performance Models, 2003. Proceedings.","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Performance evaluation with asynchronously decomposable SWN: implementation and case study\",\"authors\":\"C. Delamare, Y. Gardan, P. Moreaux\",\"doi\":\"10.1109/PNPM.2003.1231539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern systems involve more and more complex interactions leading to very large models. In the area of Stochastic Petri Nets, standard approaches are to use High Level Stochastic Petri Nets and/or some kind of compositionality to cope with this increasing complexity. In this paper we present an experimental implementation of the asynchronous decomposition method for Stochastic Well formed Nets (SWN), a class of Stochastic High level Petri nets. The method combines the Multi-valued Decision Diagram methods for structured Markov chains with the theoretical results for decomposable SWN. This implementation allows us to compute performance indices for very large and very symmetric systems. We apply our tool to the analysis of a complex Manufacturing System.\",\"PeriodicalId\":134699,\"journal\":{\"name\":\"10th International Workshop on Petri Nets and Performance Models, 2003. Proceedings.\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"10th International Workshop on Petri Nets and Performance Models, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PNPM.2003.1231539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th International Workshop on Petri Nets and Performance Models, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PNPM.2003.1231539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

现代系统涉及越来越复杂的相互作用,导致非常大的模型。在随机Petri网领域,标准的方法是使用高级随机Petri网和/或某种组合性来处理这种日益增加的复杂性。本文给出了随机高阶Petri网(random Well - formed Nets, SWN)的异步分解方法的实验实现。该方法将结构化马尔可夫链的多值决策图方法与可分解SWN的理论结果相结合。这个实现允许我们为非常大和非常对称的系统计算性能指标。我们将我们的工具应用于复杂制造系统的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance evaluation with asynchronously decomposable SWN: implementation and case study
Modern systems involve more and more complex interactions leading to very large models. In the area of Stochastic Petri Nets, standard approaches are to use High Level Stochastic Petri Nets and/or some kind of compositionality to cope with this increasing complexity. In this paper we present an experimental implementation of the asynchronous decomposition method for Stochastic Well formed Nets (SWN), a class of Stochastic High level Petri nets. The method combines the Multi-valued Decision Diagram methods for structured Markov chains with the theoretical results for decomposable SWN. This implementation allows us to compute performance indices for very large and very symmetric systems. We apply our tool to the analysis of a complex Manufacturing System.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信