求解多目标仿真优化问题的混合进化算法

L. Napalkova
{"title":"求解多目标仿真优化问题的混合进化算法","authors":"L. Napalkova","doi":"10.2478/v10143-010-0001-2","DOIUrl":null,"url":null,"abstract":"Hybridisation of Evolutionary Algorithms for Solving Multi-Objective Simulation Optimisation Problems The paper presents a taxonomic analysis of existing hybrid multi-objective evolutionary algorithms aimed at solving multi-objective simulation optimisation problems. For that, the properties of evolutionary algorithms and the requirements made to solving the problem considered are determined. Finally, a combination of the properties, which allows one to increase the approximation accuracy of the Pareto-optimal front at relatively low computational costs, is revealed.","PeriodicalId":211660,"journal":{"name":"Sci. J. Riga Tech. Univ. Ser. Comput. Sci.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hybridisation of Evolutionary Algorithms for Solving Multi-Objective Simulation Optimisation Problems\",\"authors\":\"L. Napalkova\",\"doi\":\"10.2478/v10143-010-0001-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hybridisation of Evolutionary Algorithms for Solving Multi-Objective Simulation Optimisation Problems The paper presents a taxonomic analysis of existing hybrid multi-objective evolutionary algorithms aimed at solving multi-objective simulation optimisation problems. For that, the properties of evolutionary algorithms and the requirements made to solving the problem considered are determined. Finally, a combination of the properties, which allows one to increase the approximation accuracy of the Pareto-optimal front at relatively low computational costs, is revealed.\",\"PeriodicalId\":211660,\"journal\":{\"name\":\"Sci. J. Riga Tech. Univ. Ser. Comput. Sci.\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sci. J. Riga Tech. Univ. Ser. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/v10143-010-0001-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sci. J. Riga Tech. Univ. Ser. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/v10143-010-0001-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对多目标仿真优化问题,对现有的混合多目标进化算法进行了分类分析。为此,确定了进化算法的性质和解决所考虑问题的要求。最后,揭示了这些属性的组合,使人们能够以相对较低的计算成本提高帕累托最优前沿的近似精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybridisation of Evolutionary Algorithms for Solving Multi-Objective Simulation Optimisation Problems
Hybridisation of Evolutionary Algorithms for Solving Multi-Objective Simulation Optimisation Problems The paper presents a taxonomic analysis of existing hybrid multi-objective evolutionary algorithms aimed at solving multi-objective simulation optimisation problems. For that, the properties of evolutionary algorithms and the requirements made to solving the problem considered are determined. Finally, a combination of the properties, which allows one to increase the approximation accuracy of the Pareto-optimal front at relatively low computational costs, is revealed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信