使用改进的各向异性扩散的x射线图像增强

L. Septiana, Kang-Ping Lin
{"title":"使用改进的各向异性扩散的x射线图像增强","authors":"L. Septiana, Kang-Ping Lin","doi":"10.1109/ISBB.2014.6820940","DOIUrl":null,"url":null,"abstract":"This study presents a novel X-ray image enhancement method. The method proposed in this study is an improved method from Perona-Malik anisotropic diffusion to enhance the quality of X-ray image. This improvement is implemented by combining histogram equalization, Perona-Malik anisotropic diffusion, and a weighted K-means clustering. The result from the real X-ray image shows that the proposed algorithm can improve the image quality of the original low dose x-ray image and make it become more reliable.","PeriodicalId":265886,"journal":{"name":"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"X-ray image enhancement using a modified anisotropic diffusion\",\"authors\":\"L. Septiana, Kang-Ping Lin\",\"doi\":\"10.1109/ISBB.2014.6820940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a novel X-ray image enhancement method. The method proposed in this study is an improved method from Perona-Malik anisotropic diffusion to enhance the quality of X-ray image. This improvement is implemented by combining histogram equalization, Perona-Malik anisotropic diffusion, and a weighted K-means clustering. The result from the real X-ray image shows that the proposed algorithm can improve the image quality of the original low dose x-ray image and make it become more reliable.\",\"PeriodicalId\":265886,\"journal\":{\"name\":\"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBB.2014.6820940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBB.2014.6820940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文提出了一种新的x射线图像增强方法。本文提出的方法是对Perona-Malik各向异性扩散方法的改进,以提高x射线图像的质量。这种改进是通过结合直方图均衡化、Perona-Malik各向异性扩散和加权k均值聚类来实现的。实际x射线图像的结果表明,该算法可以提高原始低剂量x射线图像的图像质量,使其变得更加可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
X-ray image enhancement using a modified anisotropic diffusion
This study presents a novel X-ray image enhancement method. The method proposed in this study is an improved method from Perona-Malik anisotropic diffusion to enhance the quality of X-ray image. This improvement is implemented by combining histogram equalization, Perona-Malik anisotropic diffusion, and a weighted K-means clustering. The result from the real X-ray image shows that the proposed algorithm can improve the image quality of the original low dose x-ray image and make it become more reliable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信