基数样条小波的微分及其在传递函数估计中的应用

Y. Tachibana
{"title":"基数样条小波的微分及其在传递函数估计中的应用","authors":"Y. Tachibana","doi":"10.1109/ISIE.2000.930381","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the differentiation by a wavelet with the scaling function given by the cardinal B-spline and its application to the estimation of a transfer function. As the cardinal B-spline consists of a Riesz base, we can define its conjugate function definitely. In this paper, we propose a calculation method of the conjugate function by the inverse finite Fourier transform. Using the conjugate scaling function given by the numerical data table, we calculate a finite expansion series in a nested subspace of the multiresolution analysis generated by the scaling function. In particular; we can show that the Gibbs' phenomenon is not aroused at the discontinuity points of a function. Next, we define a several order differential filter from the wavelet expansion formula by the property of the cardinal B-spline. Using these differential filters, we propose an identification method of a transfer function. In order to demonstrate the property and effectiveness of the proposed method, some numerical simulations are presented.","PeriodicalId":298625,"journal":{"name":"ISIE'2000. Proceedings of the 2000 IEEE International Symposium on Industrial Electronics (Cat. No.00TH8543)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differentiation by the cardinal spline wavelet and its application to the estimation of a transfer function\",\"authors\":\"Y. Tachibana\",\"doi\":\"10.1109/ISIE.2000.930381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the differentiation by a wavelet with the scaling function given by the cardinal B-spline and its application to the estimation of a transfer function. As the cardinal B-spline consists of a Riesz base, we can define its conjugate function definitely. In this paper, we propose a calculation method of the conjugate function by the inverse finite Fourier transform. Using the conjugate scaling function given by the numerical data table, we calculate a finite expansion series in a nested subspace of the multiresolution analysis generated by the scaling function. In particular; we can show that the Gibbs' phenomenon is not aroused at the discontinuity points of a function. Next, we define a several order differential filter from the wavelet expansion formula by the property of the cardinal B-spline. Using these differential filters, we propose an identification method of a transfer function. In order to demonstrate the property and effectiveness of the proposed method, some numerical simulations are presented.\",\"PeriodicalId\":298625,\"journal\":{\"name\":\"ISIE'2000. Proceedings of the 2000 IEEE International Symposium on Industrial Electronics (Cat. No.00TH8543)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISIE'2000. Proceedings of the 2000 IEEE International Symposium on Industrial Electronics (Cat. No.00TH8543)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIE.2000.930381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISIE'2000. Proceedings of the 2000 IEEE International Symposium on Industrial Electronics (Cat. No.00TH8543)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.2000.930381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了小波对基数b样条给出的标度函数的微分及其在传递函数估计中的应用。由于基数b样条由一个Riesz基组成,我们可以明确地定义它的共轭函数。本文提出了用有限傅里叶反变换计算共轭函数的一种方法。利用数值数据表给出的共轭尺度函数,计算了由尺度函数生成的多分辨率分析在嵌套子空间中的有限展开式级数。特别是;我们可以证明在函数的不连续点处不会引起吉布斯现象。其次,我们利用基数b样条的性质,从小波展开公式中定义了一个几阶微分滤波器。利用这些微分滤波器,我们提出了一种传递函数的辨识方法。为了验证所提方法的特性和有效性,给出了一些数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differentiation by the cardinal spline wavelet and its application to the estimation of a transfer function
In this paper, we consider the differentiation by a wavelet with the scaling function given by the cardinal B-spline and its application to the estimation of a transfer function. As the cardinal B-spline consists of a Riesz base, we can define its conjugate function definitely. In this paper, we propose a calculation method of the conjugate function by the inverse finite Fourier transform. Using the conjugate scaling function given by the numerical data table, we calculate a finite expansion series in a nested subspace of the multiresolution analysis generated by the scaling function. In particular; we can show that the Gibbs' phenomenon is not aroused at the discontinuity points of a function. Next, we define a several order differential filter from the wavelet expansion formula by the property of the cardinal B-spline. Using these differential filters, we propose an identification method of a transfer function. In order to demonstrate the property and effectiveness of the proposed method, some numerical simulations are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信