基于局部运动分析的视频监控背景模型估计算法

S. Luo, Li Zhang
{"title":"基于局部运动分析的视频监控背景模型估计算法","authors":"S. Luo, Li Zhang","doi":"10.1109/ICICS.2005.1689138","DOIUrl":null,"url":null,"abstract":"Knowing the background model of a video scenario simplifies the problem of object segmentation and object tracking in the automated video surveillance applications. In this paper, a new algorithm for background model estimation was presented, which is useful in situations where an unobstructed view of the background is not always available. Discovering the true background interval in pixel's intensity history through local analysis of motion and spatial information, it avoids the problems of blending pixel values present in many current methods, such as mean filter and Kalman filter. Experimental results of applying our approach on a sequence of an indoor scene are provided to demonstrate the effectiveness of the proposed method","PeriodicalId":425178,"journal":{"name":"2005 5th International Conference on Information Communications & Signal Processing","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Background Model Estimation Algorithm Based on Analysis of Local Motion for Video Surveillance\",\"authors\":\"S. Luo, Li Zhang\",\"doi\":\"10.1109/ICICS.2005.1689138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowing the background model of a video scenario simplifies the problem of object segmentation and object tracking in the automated video surveillance applications. In this paper, a new algorithm for background model estimation was presented, which is useful in situations where an unobstructed view of the background is not always available. Discovering the true background interval in pixel's intensity history through local analysis of motion and spatial information, it avoids the problems of blending pixel values present in many current methods, such as mean filter and Kalman filter. Experimental results of applying our approach on a sequence of an indoor scene are provided to demonstrate the effectiveness of the proposed method\",\"PeriodicalId\":425178,\"journal\":{\"name\":\"2005 5th International Conference on Information Communications & Signal Processing\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 5th International Conference on Information Communications & Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICS.2005.1689138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 5th International Conference on Information Communications & Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICS.2005.1689138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

了解视频场景的背景模型可以简化自动视频监控应用中的目标分割和目标跟踪问题。本文提出了一种新的背景模型估计算法,该算法适用于无法获得清晰背景视图的情况。通过对运动和空间信息的局部分析,发现像素强度历史中的真实背景间隔,避免了当前许多方法(如均值滤波和卡尔曼滤波)中存在的像素值混合问题。将该方法应用于室内场景序列的实验结果验证了该方法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Background Model Estimation Algorithm Based on Analysis of Local Motion for Video Surveillance
Knowing the background model of a video scenario simplifies the problem of object segmentation and object tracking in the automated video surveillance applications. In this paper, a new algorithm for background model estimation was presented, which is useful in situations where an unobstructed view of the background is not always available. Discovering the true background interval in pixel's intensity history through local analysis of motion and spatial information, it avoids the problems of blending pixel values present in many current methods, such as mean filter and Kalman filter. Experimental results of applying our approach on a sequence of an indoor scene are provided to demonstrate the effectiveness of the proposed method
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信