心房颤动期间心电信号的生物物理模型用于评估QRST对消算法的性能

V. Jacquemet, M. Lemay, J. Vesin, A. van Oosterom, L. Kappenberger
{"title":"心房颤动期间心电信号的生物物理模型用于评估QRST对消算法的性能","authors":"V. Jacquemet, M. Lemay, J. Vesin, A. van Oosterom, L. Kappenberger","doi":"10.1109/CIC.2005.1588107","DOIUrl":null,"url":null,"abstract":"Characterization of electrical signals during atrial fibrillation (AF) is facilitated when the ventricular electrical activity (QRST complexes) has been suppressed. However, evaluating the performance of the QRST cancellation requires knowing the atrial activity during the QRST complex. A biophysically based model of the ECG during AF was developed, in which the exact separate contributions of the atria and the ventricles is available. Abnormal electrical propagation was simulated in a 3-D model of the human atria. The atrial electrical activity on the thorax was obtained by applying the boundary element method to a compartmental torso model. The ventricular activity was incorporated as a sequence of QRST complexes extracted from the clinical ECG of a patient in sinus rhythm. The ECG obtained as the sum of the atrial and ventricular activity described above may be used as a benchmark for testing and evaluating QRST cancellation and feature extraction techniques","PeriodicalId":239491,"journal":{"name":"Computers in Cardiology, 2005","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A biophysical model of ECG signals during atrial fibrillation used to evaluate the performance of QRST cancellation algorithms\",\"authors\":\"V. Jacquemet, M. Lemay, J. Vesin, A. van Oosterom, L. Kappenberger\",\"doi\":\"10.1109/CIC.2005.1588107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Characterization of electrical signals during atrial fibrillation (AF) is facilitated when the ventricular electrical activity (QRST complexes) has been suppressed. However, evaluating the performance of the QRST cancellation requires knowing the atrial activity during the QRST complex. A biophysically based model of the ECG during AF was developed, in which the exact separate contributions of the atria and the ventricles is available. Abnormal electrical propagation was simulated in a 3-D model of the human atria. The atrial electrical activity on the thorax was obtained by applying the boundary element method to a compartmental torso model. The ventricular activity was incorporated as a sequence of QRST complexes extracted from the clinical ECG of a patient in sinus rhythm. The ECG obtained as the sum of the atrial and ventricular activity described above may be used as a benchmark for testing and evaluating QRST cancellation and feature extraction techniques\",\"PeriodicalId\":239491,\"journal\":{\"name\":\"Computers in Cardiology, 2005\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in Cardiology, 2005\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIC.2005.1588107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Cardiology, 2005","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.2005.1588107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

当心室电活动(QRST复合物)被抑制时,心房颤动(AF)期间电信号的表征变得容易。然而,评估QRST取消的性能需要了解QRST复合体期间的心房活动。建立了一种基于生物物理的AF期间心电图模型,其中心房和心室的精确独立贡献是可用的。在人体心房三维模型中模拟了异常电传播。将边界元法应用于隔室型躯干模型,得到胸腔心房电活动。心室活动被合并为从窦性心律患者的临床心电图中提取的QRST复合物序列。作为上述心房和心室活动之和的心电图可以作为测试和评估QRST消除和特征提取技术的基准
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A biophysical model of ECG signals during atrial fibrillation used to evaluate the performance of QRST cancellation algorithms
Characterization of electrical signals during atrial fibrillation (AF) is facilitated when the ventricular electrical activity (QRST complexes) has been suppressed. However, evaluating the performance of the QRST cancellation requires knowing the atrial activity during the QRST complex. A biophysically based model of the ECG during AF was developed, in which the exact separate contributions of the atria and the ventricles is available. Abnormal electrical propagation was simulated in a 3-D model of the human atria. The atrial electrical activity on the thorax was obtained by applying the boundary element method to a compartmental torso model. The ventricular activity was incorporated as a sequence of QRST complexes extracted from the clinical ECG of a patient in sinus rhythm. The ECG obtained as the sum of the atrial and ventricular activity described above may be used as a benchmark for testing and evaluating QRST cancellation and feature extraction techniques
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信