MEDART-MAS:实时多智能体仿真数据同化元模型

Bassirou Ngom, M. Diallo, N. Marilleau
{"title":"MEDART-MAS:实时多智能体仿真数据同化元模型","authors":"Bassirou Ngom, M. Diallo, N. Marilleau","doi":"10.1109/DS-RT50469.2020.9213694","DOIUrl":null,"url":null,"abstract":"In modeling and simulation process, data plays an important role. Data is required to validate the model and to experiment scenarios. It is also necessary for fitting and calibrating model parameters. In the case of online simulation, data assimilation approaches make possible to inject data into simulations and to recalibrate simulations based on real-time data. This paper addresses the challenge of assimilating data into an agent-based simulation by promoting a novel architecture dedicated to data assimilation. Few improvements have been made to adapt Multi-Agent Simulations to real-time data assimilation. The architecture is designed to be generic enough to allow wild diversity of case studies. We propose a meta-model of data assimilation and implement a toolkit based on the GAMA simulator. Finally, we use temperature data to test the implementation of a simple use case.","PeriodicalId":149260,"journal":{"name":"2020 IEEE/ACM 24th International Symposium on Distributed Simulation and Real Time Applications (DS-RT)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MEDART-MAS: MEta-model of Data Assimilation on Real-Time Multi-Agent Simulation\",\"authors\":\"Bassirou Ngom, M. Diallo, N. Marilleau\",\"doi\":\"10.1109/DS-RT50469.2020.9213694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In modeling and simulation process, data plays an important role. Data is required to validate the model and to experiment scenarios. It is also necessary for fitting and calibrating model parameters. In the case of online simulation, data assimilation approaches make possible to inject data into simulations and to recalibrate simulations based on real-time data. This paper addresses the challenge of assimilating data into an agent-based simulation by promoting a novel architecture dedicated to data assimilation. Few improvements have been made to adapt Multi-Agent Simulations to real-time data assimilation. The architecture is designed to be generic enough to allow wild diversity of case studies. We propose a meta-model of data assimilation and implement a toolkit based on the GAMA simulator. Finally, we use temperature data to test the implementation of a simple use case.\",\"PeriodicalId\":149260,\"journal\":{\"name\":\"2020 IEEE/ACM 24th International Symposium on Distributed Simulation and Real Time Applications (DS-RT)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/ACM 24th International Symposium on Distributed Simulation and Real Time Applications (DS-RT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DS-RT50469.2020.9213694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ACM 24th International Symposium on Distributed Simulation and Real Time Applications (DS-RT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DS-RT50469.2020.9213694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在建模和仿真过程中,数据起着重要的作用。需要数据来验证模型和实验场景。模型参数的拟合和标定也是必要的。在在线模拟的情况下,数据同化方法可以将数据注入模拟并根据实时数据重新校准模拟。本文通过推广一种专门用于数据同化的新型体系结构,解决了将数据同化到基于代理的模拟中的挑战。多智能体仿真在实时数据同化方面做了一些改进。该体系结构被设计得足够通用,以允许各种各样的案例研究。我们提出了一个数据同化元模型,并实现了一个基于GAMA模拟器的工具包。最后,我们使用温度数据来测试一个简单用例的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MEDART-MAS: MEta-model of Data Assimilation on Real-Time Multi-Agent Simulation
In modeling and simulation process, data plays an important role. Data is required to validate the model and to experiment scenarios. It is also necessary for fitting and calibrating model parameters. In the case of online simulation, data assimilation approaches make possible to inject data into simulations and to recalibrate simulations based on real-time data. This paper addresses the challenge of assimilating data into an agent-based simulation by promoting a novel architecture dedicated to data assimilation. Few improvements have been made to adapt Multi-Agent Simulations to real-time data assimilation. The architecture is designed to be generic enough to allow wild diversity of case studies. We propose a meta-model of data assimilation and implement a toolkit based on the GAMA simulator. Finally, we use temperature data to test the implementation of a simple use case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信