质量变化预测的两种支持向量机回归模型

Jianghui Zeng, Shuofang Zheng, Bangjun Wang
{"title":"质量变化预测的两种支持向量机回归模型","authors":"Jianghui Zeng, Shuofang Zheng, Bangjun Wang","doi":"10.1109/ICIICII.2015.118","DOIUrl":null,"url":null,"abstract":"In this paper, two support vector machine regression models for quality variation were put forward. Through two quality variation prediction cases, based on mean square error and relative error rate of the training and test result, the method of the support vector machine regression and neural networks was analyzed, and effectiveness of the two models was verified.","PeriodicalId":349920,"journal":{"name":"2015 International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two Support Vector Machine Regression Models for Quality Variation Prediction\",\"authors\":\"Jianghui Zeng, Shuofang Zheng, Bangjun Wang\",\"doi\":\"10.1109/ICIICII.2015.118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, two support vector machine regression models for quality variation were put forward. Through two quality variation prediction cases, based on mean square error and relative error rate of the training and test result, the method of the support vector machine regression and neural networks was analyzed, and effectiveness of the two models was verified.\",\"PeriodicalId\":349920,\"journal\":{\"name\":\"2015 International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIICII.2015.118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIICII.2015.118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了两种质量变化的支持向量机回归模型。通过两个质量变异预测案例,基于训练和测试结果的均方误差和相对错误率,分析了支持向量机回归和神经网络的方法,验证了两种模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two Support Vector Machine Regression Models for Quality Variation Prediction
In this paper, two support vector machine regression models for quality variation were put forward. Through two quality variation prediction cases, based on mean square error and relative error rate of the training and test result, the method of the support vector machine regression and neural networks was analyzed, and effectiveness of the two models was verified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信