蒙特卡罗模拟的纳什重加权:Tsumego

D. St-Pierre, Jialin Liu, O. Teytaud
{"title":"蒙特卡罗模拟的纳什重加权:Tsumego","authors":"D. St-Pierre, Jialin Liu, O. Teytaud","doi":"10.1109/CEC.2015.7257060","DOIUrl":null,"url":null,"abstract":"Monte Carlo simulations are widely accepted as a tool for evaluating positions in games. It can be used inside tree search algorithms, simple Monte Carlo search, Nested Monte Carlo and the famous Monte Carlo Tree Search algorithm which is at the heart of the current revolution in computer games. If one has access to a perfect simulation policy, then there is no need for an estimation of the game value. In any other cases, an evaluation through Monte Carlo simulations is a possible approach. However, games simulations are, in practice, biased. Many papers are devoted to improve Monte Carlo simulation policies by reducing this bias. In this paper, we propose a complementary tool: instead of modifying the simulations, we modify the way they are averaged by adjusting weights. We apply our method to MCTS for Tsumego solving. In particular, we improve Gnugo-MCTS without any online computational overhead.","PeriodicalId":403666,"journal":{"name":"2015 IEEE Congress on Evolutionary Computation (CEC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nash reweighting of Monte Carlo simulations: Tsumego\",\"authors\":\"D. St-Pierre, Jialin Liu, O. Teytaud\",\"doi\":\"10.1109/CEC.2015.7257060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monte Carlo simulations are widely accepted as a tool for evaluating positions in games. It can be used inside tree search algorithms, simple Monte Carlo search, Nested Monte Carlo and the famous Monte Carlo Tree Search algorithm which is at the heart of the current revolution in computer games. If one has access to a perfect simulation policy, then there is no need for an estimation of the game value. In any other cases, an evaluation through Monte Carlo simulations is a possible approach. However, games simulations are, in practice, biased. Many papers are devoted to improve Monte Carlo simulation policies by reducing this bias. In this paper, we propose a complementary tool: instead of modifying the simulations, we modify the way they are averaged by adjusting weights. We apply our method to MCTS for Tsumego solving. In particular, we improve Gnugo-MCTS without any online computational overhead.\",\"PeriodicalId\":403666,\"journal\":{\"name\":\"2015 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2015.7257060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2015.7257060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

蒙特卡罗模拟被广泛接受为在游戏中评估位置的工具。它可以在树搜索算法,简单蒙特卡罗搜索,嵌套蒙特卡罗和著名的蒙特卡罗树搜索算法中使用,这是当前计算机游戏革命的核心。如果一个人有一个完美的模拟策略,那么就不需要对游戏值进行估计。在任何其他情况下,通过蒙特卡罗模拟进行评估是一种可能的方法。然而,游戏模拟在实践中是有偏见的。许多论文致力于通过减少这种偏差来改进蒙特卡罗模拟策略。在本文中,我们提出了一个补充工具:我们通过调整权重来修改它们的平均方式,而不是修改模拟。我们将该方法应用于MCTS的Tsumego求解。特别是,我们在没有任何在线计算开销的情况下改进了gngo - mcts。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nash reweighting of Monte Carlo simulations: Tsumego
Monte Carlo simulations are widely accepted as a tool for evaluating positions in games. It can be used inside tree search algorithms, simple Monte Carlo search, Nested Monte Carlo and the famous Monte Carlo Tree Search algorithm which is at the heart of the current revolution in computer games. If one has access to a perfect simulation policy, then there is no need for an estimation of the game value. In any other cases, an evaluation through Monte Carlo simulations is a possible approach. However, games simulations are, in practice, biased. Many papers are devoted to improve Monte Carlo simulation policies by reducing this bias. In this paper, we propose a complementary tool: instead of modifying the simulations, we modify the way they are averaged by adjusting weights. We apply our method to MCTS for Tsumego solving. In particular, we improve Gnugo-MCTS without any online computational overhead.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信