基于萤火虫群算法的光伏模型辨识

Hugo Nunes, J. Pombo, J. Fermeiro, S. Mariano, M. Calado
{"title":"基于萤火虫群算法的光伏模型辨识","authors":"Hugo Nunes, J. Pombo, J. Fermeiro, S. Mariano, M. Calado","doi":"10.1109/YEF-ECE.2017.7935641","DOIUrl":null,"url":null,"abstract":"This paper presents a new algorithm for finding the parameters that characterize a photovoltaic panel by using the Glowworm Swarm Optimization algorithm. This new algorithm shows great simplicity, flexibility and precision, being able to precisely locate the global optimum point or multiple global optimum points, independently of the initial conditions. The approach here adopted allows the utilization of the algorithm in several existing models to characterize a photovoltaic panel in the current literature.","PeriodicalId":182115,"journal":{"name":"2017 International Young Engineers Forum (YEF-­ECE)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Glowworm Swarm Optimization for photovoltaic model identification\",\"authors\":\"Hugo Nunes, J. Pombo, J. Fermeiro, S. Mariano, M. Calado\",\"doi\":\"10.1109/YEF-ECE.2017.7935641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new algorithm for finding the parameters that characterize a photovoltaic panel by using the Glowworm Swarm Optimization algorithm. This new algorithm shows great simplicity, flexibility and precision, being able to precisely locate the global optimum point or multiple global optimum points, independently of the initial conditions. The approach here adopted allows the utilization of the algorithm in several existing models to characterize a photovoltaic panel in the current literature.\",\"PeriodicalId\":182115,\"journal\":{\"name\":\"2017 International Young Engineers Forum (YEF-­ECE)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Young Engineers Forum (YEF-­ECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/YEF-ECE.2017.7935641\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Young Engineers Forum (YEF-­ECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/YEF-ECE.2017.7935641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种利用萤火虫群优化算法求解光伏板特征参数的新算法。该算法具有简单、灵活、精确的特点,能够在不依赖初始条件的情况下精确定位全局最优点或多个全局最优点。本文采用的方法允许在当前文献中的几个现有模型中使用该算法来表征光伏板。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Glowworm Swarm Optimization for photovoltaic model identification
This paper presents a new algorithm for finding the parameters that characterize a photovoltaic panel by using the Glowworm Swarm Optimization algorithm. This new algorithm shows great simplicity, flexibility and precision, being able to precisely locate the global optimum point or multiple global optimum points, independently of the initial conditions. The approach here adopted allows the utilization of the algorithm in several existing models to characterize a photovoltaic panel in the current literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信