Hugo Nunes, J. Pombo, J. Fermeiro, S. Mariano, M. Calado
{"title":"基于萤火虫群算法的光伏模型辨识","authors":"Hugo Nunes, J. Pombo, J. Fermeiro, S. Mariano, M. Calado","doi":"10.1109/YEF-ECE.2017.7935641","DOIUrl":null,"url":null,"abstract":"This paper presents a new algorithm for finding the parameters that characterize a photovoltaic panel by using the Glowworm Swarm Optimization algorithm. This new algorithm shows great simplicity, flexibility and precision, being able to precisely locate the global optimum point or multiple global optimum points, independently of the initial conditions. The approach here adopted allows the utilization of the algorithm in several existing models to characterize a photovoltaic panel in the current literature.","PeriodicalId":182115,"journal":{"name":"2017 International Young Engineers Forum (YEF-ECE)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Glowworm Swarm Optimization for photovoltaic model identification\",\"authors\":\"Hugo Nunes, J. Pombo, J. Fermeiro, S. Mariano, M. Calado\",\"doi\":\"10.1109/YEF-ECE.2017.7935641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new algorithm for finding the parameters that characterize a photovoltaic panel by using the Glowworm Swarm Optimization algorithm. This new algorithm shows great simplicity, flexibility and precision, being able to precisely locate the global optimum point or multiple global optimum points, independently of the initial conditions. The approach here adopted allows the utilization of the algorithm in several existing models to characterize a photovoltaic panel in the current literature.\",\"PeriodicalId\":182115,\"journal\":{\"name\":\"2017 International Young Engineers Forum (YEF-ECE)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Young Engineers Forum (YEF-ECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/YEF-ECE.2017.7935641\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Young Engineers Forum (YEF-ECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/YEF-ECE.2017.7935641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Glowworm Swarm Optimization for photovoltaic model identification
This paper presents a new algorithm for finding the parameters that characterize a photovoltaic panel by using the Glowworm Swarm Optimization algorithm. This new algorithm shows great simplicity, flexibility and precision, being able to precisely locate the global optimum point or multiple global optimum points, independently of the initial conditions. The approach here adopted allows the utilization of the algorithm in several existing models to characterize a photovoltaic panel in the current literature.