通过大规模推特语料库上的主题特征发现来检测攻击性推文

Guang Xiang, Bin Fan, Ling Wang, Jason I. Hong, C. Rosé
{"title":"通过大规模推特语料库上的主题特征发现来检测攻击性推文","authors":"Guang Xiang, Bin Fan, Ling Wang, Jason I. Hong, C. Rosé","doi":"10.1145/2396761.2398556","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel semi-supervised approach for detecting profanity-related offensive content in Twitter. Our approach exploits linguistic regularities in profane language via statistical topic modeling on a huge Twitter corpus, and detects offensive tweets using automatically these generated features. Our approach performs competitively with a variety of machine learning (ML) algorithms. For instance, our approach achieves a true positive rate (TP) of 75.1% over 4029 testing tweets using Logistic Regression, significantly outperforming the popular keyword matching baseline, which has a TP of 69.7%, while keeping the false positive rate (FP) at the same level as the baseline at about 3.77%. Our approach provides an alternative to large scale hand annotation efforts required by fully supervised learning approaches.","PeriodicalId":313414,"journal":{"name":"Proceedings of the 21st ACM international conference on Information and knowledge management","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"254","resultStr":"{\"title\":\"Detecting offensive tweets via topical feature discovery over a large scale twitter corpus\",\"authors\":\"Guang Xiang, Bin Fan, Ling Wang, Jason I. Hong, C. Rosé\",\"doi\":\"10.1145/2396761.2398556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel semi-supervised approach for detecting profanity-related offensive content in Twitter. Our approach exploits linguistic regularities in profane language via statistical topic modeling on a huge Twitter corpus, and detects offensive tweets using automatically these generated features. Our approach performs competitively with a variety of machine learning (ML) algorithms. For instance, our approach achieves a true positive rate (TP) of 75.1% over 4029 testing tweets using Logistic Regression, significantly outperforming the popular keyword matching baseline, which has a TP of 69.7%, while keeping the false positive rate (FP) at the same level as the baseline at about 3.77%. Our approach provides an alternative to large scale hand annotation efforts required by fully supervised learning approaches.\",\"PeriodicalId\":313414,\"journal\":{\"name\":\"Proceedings of the 21st ACM international conference on Information and knowledge management\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"254\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st ACM international conference on Information and knowledge management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2396761.2398556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2396761.2398556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 254

摘要

在本文中,我们提出了一种新的半监督方法来检测Twitter中与亵渎相关的攻击性内容。我们的方法通过在一个巨大的Twitter语料库上进行统计主题建模,利用亵渎语言的语言规律,并使用这些生成的特征自动检测冒犯性推文。我们的方法与各种机器学习(ML)算法相比具有竞争力。例如,我们的方法在使用Logistic回归的4029条测试推文中实现了75.1%的真阳性率(TP),显著优于流行关键字匹配基线(TP为69.7%),同时将假阳性率(FP)保持在与基线相同的水平,约为3.77%。我们的方法为完全监督学习方法所需的大规模手工注释工作提供了一种替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting offensive tweets via topical feature discovery over a large scale twitter corpus
In this paper, we propose a novel semi-supervised approach for detecting profanity-related offensive content in Twitter. Our approach exploits linguistic regularities in profane language via statistical topic modeling on a huge Twitter corpus, and detects offensive tweets using automatically these generated features. Our approach performs competitively with a variety of machine learning (ML) algorithms. For instance, our approach achieves a true positive rate (TP) of 75.1% over 4029 testing tweets using Logistic Regression, significantly outperforming the popular keyword matching baseline, which has a TP of 69.7%, while keeping the false positive rate (FP) at the same level as the baseline at about 3.77%. Our approach provides an alternative to large scale hand annotation efforts required by fully supervised learning approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信