使用机器学习技术进行货币认证的比较研究

Arpit Sharma, B. Prathap, Javid Hussain
{"title":"使用机器学习技术进行货币认证的比较研究","authors":"Arpit Sharma, B. Prathap, Javid Hussain","doi":"10.1109/ICAITPR51569.2022.9844207","DOIUrl":null,"url":null,"abstract":"In the present banking sector, identifying the real and the fake note is a very challenging task because if we do it manually, it takes a long time to check which is real and which is fake. This research study article aims to authenticate the money between real and fake by using different machine algorithms facilitating learning, such as K-means Clustering, Random Forest Classification, Support Vector Machines, and logistics Regression. Specifically, we consider the banknote dataset. The data of money is extracted from various banknote images by using the wavelet transform tool, which is primarily used to remove elements from the images. However, we are mainly concerned with the different machine learning algorithms, so we take the two variables, where the first variable indicates image variance and the second indicates image skewness. We use these two variables to train our machine learning algorithms. So, majorly, by applying the different machine learning algorithms, which are supervised and unsupervised, we find the accuracy for the respective machine learning algorithms and then visualize and classify the real and fake notes separately. Finally, the prediction is based on integrity, which means the efficiency value is based on how much the mechanism system can uncover the fake notes. Then, after calculating the accuracy of currency authentication, there is a high possibility that the accuracy of the particular algorithm is the best algorithm, so the application of currency authentication will be very useful for the bank to easily find duplicate notes.","PeriodicalId":262409,"journal":{"name":"2022 First International Conference on Artificial Intelligence Trends and Pattern Recognition (ICAITPR)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparative Investigation on the use of Machine Learning Techniques for Currency Authentication\",\"authors\":\"Arpit Sharma, B. Prathap, Javid Hussain\",\"doi\":\"10.1109/ICAITPR51569.2022.9844207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present banking sector, identifying the real and the fake note is a very challenging task because if we do it manually, it takes a long time to check which is real and which is fake. This research study article aims to authenticate the money between real and fake by using different machine algorithms facilitating learning, such as K-means Clustering, Random Forest Classification, Support Vector Machines, and logistics Regression. Specifically, we consider the banknote dataset. The data of money is extracted from various banknote images by using the wavelet transform tool, which is primarily used to remove elements from the images. However, we are mainly concerned with the different machine learning algorithms, so we take the two variables, where the first variable indicates image variance and the second indicates image skewness. We use these two variables to train our machine learning algorithms. So, majorly, by applying the different machine learning algorithms, which are supervised and unsupervised, we find the accuracy for the respective machine learning algorithms and then visualize and classify the real and fake notes separately. Finally, the prediction is based on integrity, which means the efficiency value is based on how much the mechanism system can uncover the fake notes. Then, after calculating the accuracy of currency authentication, there is a high possibility that the accuracy of the particular algorithm is the best algorithm, so the application of currency authentication will be very useful for the bank to easily find duplicate notes.\",\"PeriodicalId\":262409,\"journal\":{\"name\":\"2022 First International Conference on Artificial Intelligence Trends and Pattern Recognition (ICAITPR)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 First International Conference on Artificial Intelligence Trends and Pattern Recognition (ICAITPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAITPR51569.2022.9844207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 First International Conference on Artificial Intelligence Trends and Pattern Recognition (ICAITPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAITPR51569.2022.9844207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在目前的银行业,识别真假钞票是一项非常具有挑战性的任务,因为如果我们手工操作,要花很长时间来检查哪些是真的,哪些是假的。这篇研究文章旨在通过使用不同的机器算法促进学习,如K-means聚类、随机森林分类、支持向量机和物流回归,来验证真假之间的货币。具体来说,我们考虑纸币数据集。利用小波变换工具从各种纸币图像中提取货币数据,小波变换主要用于去除图像中的元素。然而,我们主要关注不同的机器学习算法,所以我们取两个变量,其中第一个变量表示图像方差,第二个变量表示图像偏度。我们用这两个变量来训练机器学习算法。所以,主要是通过应用不同的机器学习算法,有监督的和无监督的,我们找到各自机器学习算法的准确性,然后将真实和虚假的钞票分别可视化和分类。最后,预测是基于完整性的,这意味着效率值是基于机制系统能在多大程度上发现假币。那么,在计算货币认证的准确性之后,很有可能特定算法的准确性是最好的算法,因此货币认证的应用对于银行轻松查找重复纸币将是非常有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparative Investigation on the use of Machine Learning Techniques for Currency Authentication
In the present banking sector, identifying the real and the fake note is a very challenging task because if we do it manually, it takes a long time to check which is real and which is fake. This research study article aims to authenticate the money between real and fake by using different machine algorithms facilitating learning, such as K-means Clustering, Random Forest Classification, Support Vector Machines, and logistics Regression. Specifically, we consider the banknote dataset. The data of money is extracted from various banknote images by using the wavelet transform tool, which is primarily used to remove elements from the images. However, we are mainly concerned with the different machine learning algorithms, so we take the two variables, where the first variable indicates image variance and the second indicates image skewness. We use these two variables to train our machine learning algorithms. So, majorly, by applying the different machine learning algorithms, which are supervised and unsupervised, we find the accuracy for the respective machine learning algorithms and then visualize and classify the real and fake notes separately. Finally, the prediction is based on integrity, which means the efficiency value is based on how much the mechanism system can uncover the fake notes. Then, after calculating the accuracy of currency authentication, there is a high possibility that the accuracy of the particular algorithm is the best algorithm, so the application of currency authentication will be very useful for the bank to easily find duplicate notes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信