Chow Man Pan, Kamalanathan Shanmugam, Muhammad Ehsan Rana, M. Jayabalan
{"title":"基于物联网和机器学习的COVID-19感染早期预测","authors":"Chow Man Pan, Kamalanathan Shanmugam, Muhammad Ehsan Rana, M. Jayabalan","doi":"10.1109/DeSE58274.2023.10099492","DOIUrl":null,"url":null,"abstract":"The deadly virus COVID-19 has heavily impacted all countries and brought a dramatic loss of human life. It is an unprecedented scenario and poses an extreme challenge to the healthcare sector. The disruption to society and the economy is devastating, causing millions of people to live in poverty. Most citizens live in exceptional hardship and are exposed to the contagious virus while being vulnerable due to the inaccessibility of quality healthcare services. This study introduces ubiquitous computing as a state-of-the-art method to mitigate the spread of COVID-19 and spare more ICU beds for those truly needed. Ubiquitous computing offers a great solution with the concept of being accessible anywhere and anytime. As COVID-19 is highly complicated and unpredictable, people infected with COVID-19 may be unaware and still live on with their life. This resulted in the spread of COVID-19 being uncontrollable. Therefore, it is essential to identify the COVID-19 infection early, not only because of the mitigation of spread but also for optimal treatment. This way, the concept of wearable sensors to collect health information and use it as an input to feed into machine learning to determine COVID-19 infection or COVID-19 status monitoring is introduced in this study.","PeriodicalId":346847,"journal":{"name":"2023 15th International Conference on Developments in eSystems Engineering (DeSE)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early Prediction of COVID-19 Infection with IoT and Machine Learning\",\"authors\":\"Chow Man Pan, Kamalanathan Shanmugam, Muhammad Ehsan Rana, M. Jayabalan\",\"doi\":\"10.1109/DeSE58274.2023.10099492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The deadly virus COVID-19 has heavily impacted all countries and brought a dramatic loss of human life. It is an unprecedented scenario and poses an extreme challenge to the healthcare sector. The disruption to society and the economy is devastating, causing millions of people to live in poverty. Most citizens live in exceptional hardship and are exposed to the contagious virus while being vulnerable due to the inaccessibility of quality healthcare services. This study introduces ubiquitous computing as a state-of-the-art method to mitigate the spread of COVID-19 and spare more ICU beds for those truly needed. Ubiquitous computing offers a great solution with the concept of being accessible anywhere and anytime. As COVID-19 is highly complicated and unpredictable, people infected with COVID-19 may be unaware and still live on with their life. This resulted in the spread of COVID-19 being uncontrollable. Therefore, it is essential to identify the COVID-19 infection early, not only because of the mitigation of spread but also for optimal treatment. This way, the concept of wearable sensors to collect health information and use it as an input to feed into machine learning to determine COVID-19 infection or COVID-19 status monitoring is introduced in this study.\",\"PeriodicalId\":346847,\"journal\":{\"name\":\"2023 15th International Conference on Developments in eSystems Engineering (DeSE)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 15th International Conference on Developments in eSystems Engineering (DeSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DeSE58274.2023.10099492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 15th International Conference on Developments in eSystems Engineering (DeSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DeSE58274.2023.10099492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Early Prediction of COVID-19 Infection with IoT and Machine Learning
The deadly virus COVID-19 has heavily impacted all countries and brought a dramatic loss of human life. It is an unprecedented scenario and poses an extreme challenge to the healthcare sector. The disruption to society and the economy is devastating, causing millions of people to live in poverty. Most citizens live in exceptional hardship and are exposed to the contagious virus while being vulnerable due to the inaccessibility of quality healthcare services. This study introduces ubiquitous computing as a state-of-the-art method to mitigate the spread of COVID-19 and spare more ICU beds for those truly needed. Ubiquitous computing offers a great solution with the concept of being accessible anywhere and anytime. As COVID-19 is highly complicated and unpredictable, people infected with COVID-19 may be unaware and still live on with their life. This resulted in the spread of COVID-19 being uncontrollable. Therefore, it is essential to identify the COVID-19 infection early, not only because of the mitigation of spread but also for optimal treatment. This way, the concept of wearable sensors to collect health information and use it as an input to feed into machine learning to determine COVID-19 infection or COVID-19 status monitoring is introduced in this study.