利用领域知识改进SAR与光学图像融合的luc分类

K. Prabhakar, Veera Harikrishna Nukala, J. Gubbi, Arpan Pal, B. P.
{"title":"利用领域知识改进SAR与光学图像融合的luc分类","authors":"K. Prabhakar, Veera Harikrishna Nukala, J. Gubbi, Arpan Pal, B. P.","doi":"10.1109/IGARSS46834.2022.9884283","DOIUrl":null,"url":null,"abstract":"Fusing SAR and multi-spectral images to generate a precise land cover map in a weakly supervised setting is a challenging yet essential problem. The inaccurate, noisy, and inexact ground truth labels pose difficulty training any machine learning models. In this paper, we make a fundamental and pivotal contribution towards improving the ground truth label quality using domain knowledge. We present a simple yet effective mechanism to refine the low-resolution noisy ground truth labels. The proposed approach is trained and tested on a publicly available DFC2020 dataset. Through experiments, we show the effectiveness of our method by training a deep learning model on the refined labels that outperform even the models trained with clean ground truth.","PeriodicalId":426003,"journal":{"name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improving SAR and Optical Image Fusion for Lulc Classification with Domain Knowledge\",\"authors\":\"K. Prabhakar, Veera Harikrishna Nukala, J. Gubbi, Arpan Pal, B. P.\",\"doi\":\"10.1109/IGARSS46834.2022.9884283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fusing SAR and multi-spectral images to generate a precise land cover map in a weakly supervised setting is a challenging yet essential problem. The inaccurate, noisy, and inexact ground truth labels pose difficulty training any machine learning models. In this paper, we make a fundamental and pivotal contribution towards improving the ground truth label quality using domain knowledge. We present a simple yet effective mechanism to refine the low-resolution noisy ground truth labels. The proposed approach is trained and tested on a publicly available DFC2020 dataset. Through experiments, we show the effectiveness of our method by training a deep learning model on the refined labels that outperform even the models trained with clean ground truth.\",\"PeriodicalId\":426003,\"journal\":{\"name\":\"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS46834.2022.9884283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS46834.2022.9884283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在弱监督环境下,融合SAR和多光谱图像生成精确的土地覆盖图是一个具有挑战性但又至关重要的问题。不准确、嘈杂和不精确的基础真值标签给训练任何机器学习模型带来了困难。在本文中,我们对利用领域知识提高地面真值标签质量做出了基础性和关键性的贡献。我们提出了一种简单而有效的机制来改进低分辨率噪声地面真值标签。所提出的方法在公开可用的DFC2020数据集上进行了训练和测试。通过实验,我们通过在精炼标签上训练深度学习模型来证明我们方法的有效性,该模型的表现甚至超过了使用干净基础真理训练的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving SAR and Optical Image Fusion for Lulc Classification with Domain Knowledge
Fusing SAR and multi-spectral images to generate a precise land cover map in a weakly supervised setting is a challenging yet essential problem. The inaccurate, noisy, and inexact ground truth labels pose difficulty training any machine learning models. In this paper, we make a fundamental and pivotal contribution towards improving the ground truth label quality using domain knowledge. We present a simple yet effective mechanism to refine the low-resolution noisy ground truth labels. The proposed approach is trained and tested on a publicly available DFC2020 dataset. Through experiments, we show the effectiveness of our method by training a deep learning model on the refined labels that outperform even the models trained with clean ground truth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信