结合多时相电阻率层析成像和预测算法支持含水层监测和管理

V. Giampaolo, P. Dell’Aversana, L. Capozzoli, G. Martino, E. Rizzo
{"title":"结合多时相电阻率层析成像和预测算法支持含水层监测和管理","authors":"V. Giampaolo, P. Dell’Aversana, L. Capozzoli, G. Martino, E. Rizzo","doi":"10.3997/2214-4609.202120034","DOIUrl":null,"url":null,"abstract":"Summary This work presents the results of geophysical data prediction by applying statistical and predictive algorithms to a multi-temporal Electric Resistivity Tomography dataset. A cross-hole time-lapse resistivity survey was carried out during an experiment addressed to monitor a tracer diffusion in a real aquifer. In order to retrieve a number of “predicted” pseudo sections of apparent resistivity values, we applied the Vector Autoregressive (VAR) and Recurrent Neural Network (RNN) algorithms over a sequence of 18 ERT surveys. Real and predicted dataset allow to delineate plume evolution under 30 m depth, describing a complex transport pathway influenced by hydraulic properties of the studied aquifer.","PeriodicalId":396561,"journal":{"name":"NSG2021 1st Conference on Hydrogeophysics","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining Multi-temporal Electric Resistivity Tomography and Predictive Algorithms for supporting aquifer monitoring and management\",\"authors\":\"V. Giampaolo, P. Dell’Aversana, L. Capozzoli, G. Martino, E. Rizzo\",\"doi\":\"10.3997/2214-4609.202120034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary This work presents the results of geophysical data prediction by applying statistical and predictive algorithms to a multi-temporal Electric Resistivity Tomography dataset. A cross-hole time-lapse resistivity survey was carried out during an experiment addressed to monitor a tracer diffusion in a real aquifer. In order to retrieve a number of “predicted” pseudo sections of apparent resistivity values, we applied the Vector Autoregressive (VAR) and Recurrent Neural Network (RNN) algorithms over a sequence of 18 ERT surveys. Real and predicted dataset allow to delineate plume evolution under 30 m depth, describing a complex transport pathway influenced by hydraulic properties of the studied aquifer.\",\"PeriodicalId\":396561,\"journal\":{\"name\":\"NSG2021 1st Conference on Hydrogeophysics\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NSG2021 1st Conference on Hydrogeophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.202120034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NSG2021 1st Conference on Hydrogeophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.202120034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本工作介绍了将统计和预测算法应用于多时相电阻率层析成像数据集的地球物理数据预测结果。为了监测实际含水层中示踪剂的扩散,在实验中进行了井间延时电阻率测量。为了检索一些“预测”的视电阻率值的伪剖面,我们对18个ERT调查序列应用了向量自回归(VAR)和递归神经网络(RNN)算法。真实的和预测的数据集可以描绘30米深度下的羽流演化,描述受研究含水层水力特性影响的复杂运输路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining Multi-temporal Electric Resistivity Tomography and Predictive Algorithms for supporting aquifer monitoring and management
Summary This work presents the results of geophysical data prediction by applying statistical and predictive algorithms to a multi-temporal Electric Resistivity Tomography dataset. A cross-hole time-lapse resistivity survey was carried out during an experiment addressed to monitor a tracer diffusion in a real aquifer. In order to retrieve a number of “predicted” pseudo sections of apparent resistivity values, we applied the Vector Autoregressive (VAR) and Recurrent Neural Network (RNN) algorithms over a sequence of 18 ERT surveys. Real and predicted dataset allow to delineate plume evolution under 30 m depth, describing a complex transport pathway influenced by hydraulic properties of the studied aquifer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信