HPCFAIR:为HPC应用程序启用公平AI

Gaurav Verma, M. Emani, C. Liao, Pei-Hung Lin, T. Vanderbruggen, Xipeng Shen, Barbara M. Chapman
{"title":"HPCFAIR:为HPC应用程序启用公平AI","authors":"Gaurav Verma, M. Emani, C. Liao, Pei-Hung Lin, T. Vanderbruggen, Xipeng Shen, Barbara M. Chapman","doi":"10.1109/mlhpc54614.2021.00011","DOIUrl":null,"url":null,"abstract":"Artificial Intelligence (AI) is being adopted in different domains at an unprecedented scale. A significant interest in the scientific community also involves leveraging machine learning (ML) to effectively run high performance computing applications at scale. Given multiple efforts in this arena, there are often duplicated efforts when existing rich data sets and ML models could be leveraged instead. The primary challenge is a lack of an ecosystem to reuse and reproduce the models and datasets. In this work, we propose HPCFAIR, a modular, extensible framework to enable AI models to be Findable, Accessible, Interoperable and Reproducible (FAIR). It enables users with a structured approach to search, load, save and reuse the models in their codes. We present the design, implementation of our framework and highlight how it can be seamlessly integrated to ML-driven applications for high performance computing applications and scientific machine learning workloads.","PeriodicalId":101642,"journal":{"name":"2021 IEEE/ACM Workshop on Machine Learning in High Performance Computing Environments (MLHPC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"HPCFAIR: Enabling FAIR AI for HPC Applications\",\"authors\":\"Gaurav Verma, M. Emani, C. Liao, Pei-Hung Lin, T. Vanderbruggen, Xipeng Shen, Barbara M. Chapman\",\"doi\":\"10.1109/mlhpc54614.2021.00011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial Intelligence (AI) is being adopted in different domains at an unprecedented scale. A significant interest in the scientific community also involves leveraging machine learning (ML) to effectively run high performance computing applications at scale. Given multiple efforts in this arena, there are often duplicated efforts when existing rich data sets and ML models could be leveraged instead. The primary challenge is a lack of an ecosystem to reuse and reproduce the models and datasets. In this work, we propose HPCFAIR, a modular, extensible framework to enable AI models to be Findable, Accessible, Interoperable and Reproducible (FAIR). It enables users with a structured approach to search, load, save and reuse the models in their codes. We present the design, implementation of our framework and highlight how it can be seamlessly integrated to ML-driven applications for high performance computing applications and scientific machine learning workloads.\",\"PeriodicalId\":101642,\"journal\":{\"name\":\"2021 IEEE/ACM Workshop on Machine Learning in High Performance Computing Environments (MLHPC)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM Workshop on Machine Learning in High Performance Computing Environments (MLHPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/mlhpc54614.2021.00011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM Workshop on Machine Learning in High Performance Computing Environments (MLHPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mlhpc54614.2021.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

人工智能(AI)正在以前所未有的规模应用于不同的领域。科学界的一个重要兴趣还涉及利用机器学习(ML)来有效地大规模运行高性能计算应用程序。考虑到这个领域的多种努力,当现有的丰富数据集和ML模型可以被利用时,通常会有重复的努力。主要的挑战是缺乏一个可重用和重现模型和数据集的生态系统。在这项工作中,我们提出了HPCFAIR,这是一个模块化的可扩展框架,使人工智能模型具有可查找、可访问、可互操作和可重复性(FAIR)。它使用户能够使用结构化的方法来搜索、加载、保存和重用代码中的模型。我们介绍了框架的设计和实现,并强调了如何将其无缝集成到机器学习驱动的应用程序中,以实现高性能计算应用程序和科学机器学习工作负载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HPCFAIR: Enabling FAIR AI for HPC Applications
Artificial Intelligence (AI) is being adopted in different domains at an unprecedented scale. A significant interest in the scientific community also involves leveraging machine learning (ML) to effectively run high performance computing applications at scale. Given multiple efforts in this arena, there are often duplicated efforts when existing rich data sets and ML models could be leveraged instead. The primary challenge is a lack of an ecosystem to reuse and reproduce the models and datasets. In this work, we propose HPCFAIR, a modular, extensible framework to enable AI models to be Findable, Accessible, Interoperable and Reproducible (FAIR). It enables users with a structured approach to search, load, save and reuse the models in their codes. We present the design, implementation of our framework and highlight how it can be seamlessly integrated to ML-driven applications for high performance computing applications and scientific machine learning workloads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信