杂波环境下基于em的分布式估计

Dianhui Xu, Yingwei Yao
{"title":"杂波环境下基于em的分布式估计","authors":"Dianhui Xu, Yingwei Yao","doi":"10.1109/EIT.2008.4554295","DOIUrl":null,"url":null,"abstract":"We consider a one-dimensional target estimation problem in a cluttered environment. A distributed estimator based on expectation-maximization (EM) algorithm and uncoded analog transmissions is developed. Through this experiment, one can gain some insights into methodology in the design of distributed estimator in sensor networks. As shown in our simulation, the proposed algorithm achieves significant estimation performance gain over existing distributed estimators under a communication constraint. Modified Cramer-Rao bound is also derived to provide a performance benchmark.","PeriodicalId":215400,"journal":{"name":"2008 IEEE International Conference on Electro/Information Technology","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EM-based distributed estimation in cluttered environment\",\"authors\":\"Dianhui Xu, Yingwei Yao\",\"doi\":\"10.1109/EIT.2008.4554295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a one-dimensional target estimation problem in a cluttered environment. A distributed estimator based on expectation-maximization (EM) algorithm and uncoded analog transmissions is developed. Through this experiment, one can gain some insights into methodology in the design of distributed estimator in sensor networks. As shown in our simulation, the proposed algorithm achieves significant estimation performance gain over existing distributed estimators under a communication constraint. Modified Cramer-Rao bound is also derived to provide a performance benchmark.\",\"PeriodicalId\":215400,\"journal\":{\"name\":\"2008 IEEE International Conference on Electro/Information Technology\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Electro/Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EIT.2008.4554295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Electro/Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT.2008.4554295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了一个杂乱环境下的一维目标估计问题。提出了一种基于期望最大化(EM)算法和无编码模拟传输的分布式估计器。通过这个实验,我们可以对传感器网络中分布式估计器的设计方法有一些深入的了解。仿真结果表明,在通信约束下,该算法比现有的分布式估计器获得了显著的估计性能增益。还推导了改进的Cramer-Rao界,以提供性能基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EM-based distributed estimation in cluttered environment
We consider a one-dimensional target estimation problem in a cluttered environment. A distributed estimator based on expectation-maximization (EM) algorithm and uncoded analog transmissions is developed. Through this experiment, one can gain some insights into methodology in the design of distributed estimator in sensor networks. As shown in our simulation, the proposed algorithm achieves significant estimation performance gain over existing distributed estimators under a communication constraint. Modified Cramer-Rao bound is also derived to provide a performance benchmark.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信