尺度沟道长度对纳米级场效应管性能的影响

J. K. Saha, N. Chakma, M. Hasan
{"title":"尺度沟道长度对纳米级场效应管性能的影响","authors":"J. K. Saha, N. Chakma, M. Hasan","doi":"10.1109/ICECE.2016.7853871","DOIUrl":null,"url":null,"abstract":"The investigation of short-channel effects (SCE) due to channel length reduction for four different types of n-channel FETs: Bulk MOSFET, SOI MOSFET, DG MOSFET and CNTFET are carried out in this work. Simulators are used to investigate SCEs like threshold voltage (V<inf>th</inf>) roll-off, subthreshold Swing (SS) and I<inf>on</inf>/I<inf>off</inf> ratio. Our study shows that DG MOSFET, SOI MOSFET and Bulk MOSFET reach their scalable limit at 30 nm, 50 nm and 100 nm channel length respectively due to elevation of leakage power consumption as they exhibit rapid degradation of V<inf>th</inf>, SS beyond 100mV/decade and less I<inf>on</inf>/I<inf>off</inf> ratio. On the contrary, CNTFET can be scaled down below 10 nm as it shows negligible SCEs with stable V<inf>th</inf>, ideal SS (60mV/decade) and high I<inf>on</inf>/I<inf>off</inf> ratio as channel length decreases. Our numerical analysis shows CNTFET creates only 1.11% V<inf>th</inf> variation whereas DG MOSFET creates 39.33% V<inf>th</inf> variation. CNTFETs advantages over MOSFET make it viable for faster and enhanced applications in nanoelectronics.","PeriodicalId":122930,"journal":{"name":"2016 9th International Conference on Electrical and Computer Engineering (ICECE)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Impact of scaling channel length on the performances of nanoscale FETs\",\"authors\":\"J. K. Saha, N. Chakma, M. Hasan\",\"doi\":\"10.1109/ICECE.2016.7853871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The investigation of short-channel effects (SCE) due to channel length reduction for four different types of n-channel FETs: Bulk MOSFET, SOI MOSFET, DG MOSFET and CNTFET are carried out in this work. Simulators are used to investigate SCEs like threshold voltage (V<inf>th</inf>) roll-off, subthreshold Swing (SS) and I<inf>on</inf>/I<inf>off</inf> ratio. Our study shows that DG MOSFET, SOI MOSFET and Bulk MOSFET reach their scalable limit at 30 nm, 50 nm and 100 nm channel length respectively due to elevation of leakage power consumption as they exhibit rapid degradation of V<inf>th</inf>, SS beyond 100mV/decade and less I<inf>on</inf>/I<inf>off</inf> ratio. On the contrary, CNTFET can be scaled down below 10 nm as it shows negligible SCEs with stable V<inf>th</inf>, ideal SS (60mV/decade) and high I<inf>on</inf>/I<inf>off</inf> ratio as channel length decreases. Our numerical analysis shows CNTFET creates only 1.11% V<inf>th</inf> variation whereas DG MOSFET creates 39.33% V<inf>th</inf> variation. CNTFETs advantages over MOSFET make it viable for faster and enhanced applications in nanoelectronics.\",\"PeriodicalId\":122930,\"journal\":{\"name\":\"2016 9th International Conference on Electrical and Computer Engineering (ICECE)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 9th International Conference on Electrical and Computer Engineering (ICECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECE.2016.7853871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 9th International Conference on Electrical and Computer Engineering (ICECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECE.2016.7853871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了四种不同类型的n沟道fet (Bulk MOSFET, SOI MOSFET, DG MOSFET和CNTFET)由于沟道长度减少而产生的短沟道效应(SCE)。模拟器用于研究sce,如阈值电压(Vth)滚降、亚阈值摆幅(SS)和离子/开关比。我们的研究表明,DG MOSFET、SOI MOSFET和Bulk MOSFET分别在30 nm、50 nm和100 nm通道长度处达到可扩展极限,这是由于泄漏功耗的提高,因为它们在超过100mV/decade时表现出快速的Vth、SS退化和更低的Ion/Ioff比。相反,CNTFET可以缩小到10 nm以下,因为它显示出可以忽略不计的ses,稳定的Vth,理想的SS (60mV/decade)和高离子/ off比,随着通道长度的减小。我们的数值分析表明,CNTFET只产生1.11%的Vth变化,而DG MOSFET产生39.33%的Vth变化。与MOSFET相比,cntfet的优势使其在纳米电子学中具有更快和更强的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of scaling channel length on the performances of nanoscale FETs
The investigation of short-channel effects (SCE) due to channel length reduction for four different types of n-channel FETs: Bulk MOSFET, SOI MOSFET, DG MOSFET and CNTFET are carried out in this work. Simulators are used to investigate SCEs like threshold voltage (Vth) roll-off, subthreshold Swing (SS) and Ion/Ioff ratio. Our study shows that DG MOSFET, SOI MOSFET and Bulk MOSFET reach their scalable limit at 30 nm, 50 nm and 100 nm channel length respectively due to elevation of leakage power consumption as they exhibit rapid degradation of Vth, SS beyond 100mV/decade and less Ion/Ioff ratio. On the contrary, CNTFET can be scaled down below 10 nm as it shows negligible SCEs with stable Vth, ideal SS (60mV/decade) and high Ion/Ioff ratio as channel length decreases. Our numerical analysis shows CNTFET creates only 1.11% Vth variation whereas DG MOSFET creates 39.33% Vth variation. CNTFETs advantages over MOSFET make it viable for faster and enhanced applications in nanoelectronics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信