用声带结节模拟人类发声

S. Deguchi, Yukihito Kawahara
{"title":"用声带结节模拟人类发声","authors":"S. Deguchi, Yukihito Kawahara","doi":"10.4236/ajcm.2011.13022","DOIUrl":null,"url":null,"abstract":"The geometric and biomechanical properties of the larynx strongly influence voice quality and efficiency. A physical understanding of phonation natures in pathological conditions is important for predictions of how voice disorders can be treated using therapy and rehabilitation. Here, we present a continuum-based numerical model of phonation that considers complex fluid-structure interactions occurring in the airway. This model considers a three-dimensional geometry of vocal folds, muscle contractions, and viscoelastic properties to provide a realistic framework of phonation. The vocal fold motion is coupled to an unsteady compressible respiratory flow, allowing numerical simulations of normal and diseased phonations to derive clear relationships between actual laryngeal structures and model parameters such as muscle activity. As a pilot analysis of diseased phonation, we model vocal nodules, the mass lesions that can appear bilaterally on both sides of the vocal folds. Comparison of simulations with and without the nodules demonstrates how the lesions affect vocal fold motion, consequently restricting voice quality. Furthermore, we found that the minimum lung pressure required for voice production increases as nodules move closer to the center of the vocal fold. Thus, simulations using the developed model may provide essential insight into complex phonation phenomena and further elucidate the etiologic mechanisms of voice disorders.","PeriodicalId":359476,"journal":{"name":"Am. J. Comput. Math.","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Simulation of Human Phonation with Vocal Nodules\",\"authors\":\"S. Deguchi, Yukihito Kawahara\",\"doi\":\"10.4236/ajcm.2011.13022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The geometric and biomechanical properties of the larynx strongly influence voice quality and efficiency. A physical understanding of phonation natures in pathological conditions is important for predictions of how voice disorders can be treated using therapy and rehabilitation. Here, we present a continuum-based numerical model of phonation that considers complex fluid-structure interactions occurring in the airway. This model considers a three-dimensional geometry of vocal folds, muscle contractions, and viscoelastic properties to provide a realistic framework of phonation. The vocal fold motion is coupled to an unsteady compressible respiratory flow, allowing numerical simulations of normal and diseased phonations to derive clear relationships between actual laryngeal structures and model parameters such as muscle activity. As a pilot analysis of diseased phonation, we model vocal nodules, the mass lesions that can appear bilaterally on both sides of the vocal folds. Comparison of simulations with and without the nodules demonstrates how the lesions affect vocal fold motion, consequently restricting voice quality. Furthermore, we found that the minimum lung pressure required for voice production increases as nodules move closer to the center of the vocal fold. Thus, simulations using the developed model may provide essential insight into complex phonation phenomena and further elucidate the etiologic mechanisms of voice disorders.\",\"PeriodicalId\":359476,\"journal\":{\"name\":\"Am. J. Comput. Math.\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Am. J. Comput. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/ajcm.2011.13022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Am. J. Comput. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/ajcm.2011.13022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

喉部的几何和生物力学特性强烈影响语音质量和效率。对病理条件下发声性质的物理理解对于预测如何使用治疗和康复来治疗语音障碍是重要的。在这里,我们提出了一个基于连续体的发声数值模型,该模型考虑了气道中发生的复杂流固相互作用。该模型考虑了声带的三维几何形状、肌肉收缩和粘弹性特性,以提供一个真实的发声框架。声带运动与不稳定的可压缩呼吸流动相耦合,允许正常和患病发声的数值模拟,以得出实际喉部结构和模型参数(如肌肉活动)之间的明确关系。作为病变发声的初步分析,我们模拟了声带结节,肿块病变可以出现在声带两侧。有和没有结节的模拟比较显示病变如何影响声带运动,从而限制语音质量。此外,我们发现,当结节靠近声带中心时,发声所需的最小肺压力增加。因此,使用所开发的模型进行模拟可以为复杂的发声现象提供必要的见解,并进一步阐明声音障碍的病因机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation of Human Phonation with Vocal Nodules
The geometric and biomechanical properties of the larynx strongly influence voice quality and efficiency. A physical understanding of phonation natures in pathological conditions is important for predictions of how voice disorders can be treated using therapy and rehabilitation. Here, we present a continuum-based numerical model of phonation that considers complex fluid-structure interactions occurring in the airway. This model considers a three-dimensional geometry of vocal folds, muscle contractions, and viscoelastic properties to provide a realistic framework of phonation. The vocal fold motion is coupled to an unsteady compressible respiratory flow, allowing numerical simulations of normal and diseased phonations to derive clear relationships between actual laryngeal structures and model parameters such as muscle activity. As a pilot analysis of diseased phonation, we model vocal nodules, the mass lesions that can appear bilaterally on both sides of the vocal folds. Comparison of simulations with and without the nodules demonstrates how the lesions affect vocal fold motion, consequently restricting voice quality. Furthermore, we found that the minimum lung pressure required for voice production increases as nodules move closer to the center of the vocal fold. Thus, simulations using the developed model may provide essential insight into complex phonation phenomena and further elucidate the etiologic mechanisms of voice disorders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信