全局耦合振荡器的非线性动力学:精确解

G. Pritula, V. Pritula, V. Vekslerchik
{"title":"全局耦合振荡器的非线性动力学:精确解","authors":"G. Pritula, V. Pritula, V. Vekslerchik","doi":"10.1109/MMET.2006.1689857","DOIUrl":null,"url":null,"abstract":"In the present paper we study analytically the nonlinear dynamics of globally coupled oscillators in the framework of order parameters approach. The main result is the exact analytical solution of the nonlinear system describing the behavior of the oscillators in the orthogonal reduction. We have obtained complete description of all possible phase portraits, the exact expressions for the attracting manifolds including the limit cycle and have derived analytical solutions for arbitrary initial data","PeriodicalId":236672,"journal":{"name":"2006 International Conference on Mathematical Methods in Electromagnetic Theory","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear dynamics of globally coupled oscillators: exact solutions\",\"authors\":\"G. Pritula, V. Pritula, V. Vekslerchik\",\"doi\":\"10.1109/MMET.2006.1689857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper we study analytically the nonlinear dynamics of globally coupled oscillators in the framework of order parameters approach. The main result is the exact analytical solution of the nonlinear system describing the behavior of the oscillators in the orthogonal reduction. We have obtained complete description of all possible phase portraits, the exact expressions for the attracting manifolds including the limit cycle and have derived analytical solutions for arbitrary initial data\",\"PeriodicalId\":236672,\"journal\":{\"name\":\"2006 International Conference on Mathematical Methods in Electromagnetic Theory\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Conference on Mathematical Methods in Electromagnetic Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMET.2006.1689857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Mathematical Methods in Electromagnetic Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMET.2006.1689857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文在序参数方法的框架下,对全局耦合振子的非线性动力学进行了解析研究。主要结果是描述正交约简中振子行为的非线性系统的精确解析解。我们得到了所有可能相图的完整描述,包括极限环在内的吸引流形的精确表达式,并推导了任意初始数据的解析解
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear dynamics of globally coupled oscillators: exact solutions
In the present paper we study analytically the nonlinear dynamics of globally coupled oscillators in the framework of order parameters approach. The main result is the exact analytical solution of the nonlinear system describing the behavior of the oscillators in the orthogonal reduction. We have obtained complete description of all possible phase portraits, the exact expressions for the attracting manifolds including the limit cycle and have derived analytical solutions for arbitrary initial data
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信