{"title":"捕获:基于云的HPC自适应数据传输服务","authors":"H. M. Monti, A. Butt, Sudharshan S. Vazhkudai","doi":"10.1109/IPDPS.2011.118","DOIUrl":null,"url":null,"abstract":"Modern High Performance Computing (HPC) applications process very large amounts of data. A critical research challenge lies in transporting input data to the HPC center from a number of distributed sources, e.g., scientific experiments and web repositories, etc., and offloading the result data to geographically distributed, intermittently available end-users, often over under-provisioned connections. Such end-user data services are typically performed using point-to-point transfers that are designed for well-endowed sites and are unable to reconcile the center's resource usage and users' delivery deadlines, unable to adapt to changing dynamics in the end-to-end data path and are not fault-tolerant. To overcome these inefficiencies, decentralized HPC data services are emerging as viable alternatives. In this paper, we develop and enhance such distributed data services by designing CATCH, a Cloud-based Adaptive data Transfer service for HPC. CATCH leverages a bevy of cloud storage resources to orchestrate a decentralized data transport with fail-over capabilities. Our results demonstrate that CATCH is a feasible approach, and can help improve the data transfer times at the HPC center by as much as 81.1\\% for typical HPC workloads.","PeriodicalId":355100,"journal":{"name":"2011 IEEE International Parallel & Distributed Processing Symposium","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"CATCH: A Cloud-Based Adaptive Data Transfer Service for HPC\",\"authors\":\"H. M. Monti, A. Butt, Sudharshan S. Vazhkudai\",\"doi\":\"10.1109/IPDPS.2011.118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern High Performance Computing (HPC) applications process very large amounts of data. A critical research challenge lies in transporting input data to the HPC center from a number of distributed sources, e.g., scientific experiments and web repositories, etc., and offloading the result data to geographically distributed, intermittently available end-users, often over under-provisioned connections. Such end-user data services are typically performed using point-to-point transfers that are designed for well-endowed sites and are unable to reconcile the center's resource usage and users' delivery deadlines, unable to adapt to changing dynamics in the end-to-end data path and are not fault-tolerant. To overcome these inefficiencies, decentralized HPC data services are emerging as viable alternatives. In this paper, we develop and enhance such distributed data services by designing CATCH, a Cloud-based Adaptive data Transfer service for HPC. CATCH leverages a bevy of cloud storage resources to orchestrate a decentralized data transport with fail-over capabilities. Our results demonstrate that CATCH is a feasible approach, and can help improve the data transfer times at the HPC center by as much as 81.1\\\\% for typical HPC workloads.\",\"PeriodicalId\":355100,\"journal\":{\"name\":\"2011 IEEE International Parallel & Distributed Processing Symposium\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Parallel & Distributed Processing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2011.118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Parallel & Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2011.118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CATCH: A Cloud-Based Adaptive Data Transfer Service for HPC
Modern High Performance Computing (HPC) applications process very large amounts of data. A critical research challenge lies in transporting input data to the HPC center from a number of distributed sources, e.g., scientific experiments and web repositories, etc., and offloading the result data to geographically distributed, intermittently available end-users, often over under-provisioned connections. Such end-user data services are typically performed using point-to-point transfers that are designed for well-endowed sites and are unable to reconcile the center's resource usage and users' delivery deadlines, unable to adapt to changing dynamics in the end-to-end data path and are not fault-tolerant. To overcome these inefficiencies, decentralized HPC data services are emerging as viable alternatives. In this paper, we develop and enhance such distributed data services by designing CATCH, a Cloud-based Adaptive data Transfer service for HPC. CATCH leverages a bevy of cloud storage resources to orchestrate a decentralized data transport with fail-over capabilities. Our results demonstrate that CATCH is a feasible approach, and can help improve the data transfer times at the HPC center by as much as 81.1\% for typical HPC workloads.