磁共振弥散张量成像纤维束

Baba C. Vemuri, Yun Chen, M. Rao, Tim McGraw, Zhizhou Wang, T. Mareci
{"title":"磁共振弥散张量成像纤维束","authors":"Baba C. Vemuri, Yun Chen, M. Rao, Tim McGraw, Zhizhou Wang, T. Mareci","doi":"10.1109/VLSM.2001.938885","DOIUrl":null,"url":null,"abstract":"To understand evolving pathology in the central nervous system (CNS) and develop effective treatments, it is essential to correlate the nerve fiber connectivity with the visualization of function. Diffusion tensor imaging (DTI) can provide the fundamental information required for viewing structural connectivity. We present a novel algorithm for automatic fiber tract mapping in the CNS specifically, the spinal cord. The automatic fiber tract mapping problem is solved in two phases, namely a data smoothing phase and a fiber tract mapping phase. In the former, smoothing is achieved via a new weighted total variation (TV)-norm minimization (for vector-valued data) which strives to smooth while retaining all relevant detail. For the fiber tract mapping, a smooth 3D vector field indicating the dominant anisotropic direction at each spatial location is computed from the smoothed data. Fiber tracts are then determined as the smooth integral curves of this vector field in a variational framework.","PeriodicalId":445975,"journal":{"name":"Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"105","resultStr":"{\"title\":\"Fiber tract mapping from diffusion tensor MRI\",\"authors\":\"Baba C. Vemuri, Yun Chen, M. Rao, Tim McGraw, Zhizhou Wang, T. Mareci\",\"doi\":\"10.1109/VLSM.2001.938885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To understand evolving pathology in the central nervous system (CNS) and develop effective treatments, it is essential to correlate the nerve fiber connectivity with the visualization of function. Diffusion tensor imaging (DTI) can provide the fundamental information required for viewing structural connectivity. We present a novel algorithm for automatic fiber tract mapping in the CNS specifically, the spinal cord. The automatic fiber tract mapping problem is solved in two phases, namely a data smoothing phase and a fiber tract mapping phase. In the former, smoothing is achieved via a new weighted total variation (TV)-norm minimization (for vector-valued data) which strives to smooth while retaining all relevant detail. For the fiber tract mapping, a smooth 3D vector field indicating the dominant anisotropic direction at each spatial location is computed from the smoothed data. Fiber tracts are then determined as the smooth integral curves of this vector field in a variational framework.\",\"PeriodicalId\":445975,\"journal\":{\"name\":\"Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"105\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSM.2001.938885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSM.2001.938885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 105

摘要

为了了解中枢神经系统(CNS)的病理演变并开发有效的治疗方法,必须将神经纤维连接与功能可视化联系起来。扩散张量成像(Diffusion tensor imaging, DTI)可以提供观察结构连通性所需的基本信息。我们提出了一个新的算法自动纤维束映射在中枢神经系统,特别是脊髓。光纤束自动映射问题分两个阶段解决,即数据平滑阶段和光纤束映射阶段。在前者中,平滑是通过一种新的加权总变差(TV)-范数最小化(对于矢量值数据)来实现的,该方法在保持所有相关细节的同时力求平滑。对于光纤束映射,从光滑的数据中计算出一个光滑的三维矢量场,该矢量场表示每个空间位置上的主要各向异性方向。然后将纤维束确定为该矢量场在变分框架中的光滑积分曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fiber tract mapping from diffusion tensor MRI
To understand evolving pathology in the central nervous system (CNS) and develop effective treatments, it is essential to correlate the nerve fiber connectivity with the visualization of function. Diffusion tensor imaging (DTI) can provide the fundamental information required for viewing structural connectivity. We present a novel algorithm for automatic fiber tract mapping in the CNS specifically, the spinal cord. The automatic fiber tract mapping problem is solved in two phases, namely a data smoothing phase and a fiber tract mapping phase. In the former, smoothing is achieved via a new weighted total variation (TV)-norm minimization (for vector-valued data) which strives to smooth while retaining all relevant detail. For the fiber tract mapping, a smooth 3D vector field indicating the dominant anisotropic direction at each spatial location is computed from the smoothed data. Fiber tracts are then determined as the smooth integral curves of this vector field in a variational framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信