基于链接聚类的科学合著网络协同模式提取

Erick Stattner, M. Collard
{"title":"基于链接聚类的科学合著网络协同模式提取","authors":"Erick Stattner, M. Collard","doi":"10.1145/3110025.3110146","DOIUrl":null,"url":null,"abstract":"In this article, we analyse a collaborative network to understand the underlying patterns that structure the co-writing process of scientific articles. Our goal is to identify and understand the collaboration tendencies from authors publishing activities. For this purpose, we adopt a descriptive modelling through a network approach that consists first in generating the collaborative network from data on publications. Nodes of the network are then enriched with a set of individual attributes extracted from the publishing activity of each author. Finally, we search for conceptual views, a recent link clustering approach, which allows to summarize any kind of networks by highlighting the sets of attributes found frequently linked. Results show that it exists strong tendencies that unconsciously structure the collaboration behaviours. In this paper, we present these tendencies and show how they evolve according to different extraction thresholds.","PeriodicalId":399660,"journal":{"name":"Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Link Clustering for Extracting Collaborative Patterns in a Scientific Co-Authored Network\",\"authors\":\"Erick Stattner, M. Collard\",\"doi\":\"10.1145/3110025.3110146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we analyse a collaborative network to understand the underlying patterns that structure the co-writing process of scientific articles. Our goal is to identify and understand the collaboration tendencies from authors publishing activities. For this purpose, we adopt a descriptive modelling through a network approach that consists first in generating the collaborative network from data on publications. Nodes of the network are then enriched with a set of individual attributes extracted from the publishing activity of each author. Finally, we search for conceptual views, a recent link clustering approach, which allows to summarize any kind of networks by highlighting the sets of attributes found frequently linked. Results show that it exists strong tendencies that unconsciously structure the collaboration behaviours. In this paper, we present these tendencies and show how they evolve according to different extraction thresholds.\",\"PeriodicalId\":399660,\"journal\":{\"name\":\"Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3110025.3110146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3110025.3110146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们分析了一个协作网络,以了解构建科学文章共同写作过程的潜在模式。我们的目标是识别和理解作者出版活动的合作趋势。为此,我们通过网络方法采用描述性建模,该方法首先包括从出版物数据生成协作网络。然后用从每个作者的出版活动中提取的一组个人属性来丰富网络节点。最后,我们搜索概念视图,这是一种最近的链接聚类方法,它允许通过突出显示发现频繁链接的属性集来总结任何类型的网络。结果表明,企业存在着较强的无意识构建协作行为的倾向。在本文中,我们提出了这些趋势,并展示了它们如何根据不同的提取阈值而演变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Link Clustering for Extracting Collaborative Patterns in a Scientific Co-Authored Network
In this article, we analyse a collaborative network to understand the underlying patterns that structure the co-writing process of scientific articles. Our goal is to identify and understand the collaboration tendencies from authors publishing activities. For this purpose, we adopt a descriptive modelling through a network approach that consists first in generating the collaborative network from data on publications. Nodes of the network are then enriched with a set of individual attributes extracted from the publishing activity of each author. Finally, we search for conceptual views, a recent link clustering approach, which allows to summarize any kind of networks by highlighting the sets of attributes found frequently linked. Results show that it exists strong tendencies that unconsciously structure the collaboration behaviours. In this paper, we present these tendencies and show how they evolve according to different extraction thresholds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信