在特殊仿射傅里叶变换域中的最大集中信号

A. Zayed
{"title":"在特殊仿射傅里叶变换域中的最大集中信号","authors":"A. Zayed","doi":"10.1109/SAMPTA.2015.7148841","DOIUrl":null,"url":null,"abstract":"The problem of maximizing the energy of a signal bandlimited to E<sub>1</sub> = [-σ, σ] on an interval T<sub>1</sub> = [-τ, τ] in the time domain, which is called the energy concentration problem, was solved by a group of mathematicians, D. Slepian, H. Landau, and H. Pollak, at Bell Labs in the 1960s. The goal of this article is to solve the energy concentration problem for the n-dimensional special affine Fourier transformation which includes the Fourier transform, the fractional Fourier transform, the Lorentz transform, the Fresnel transform, and the linear canonical transform (LCT) as special cases. The solution in dimensions higher than one is more challenging because the solution depends on the geometry of the two sets E<sub>1</sub> and T<sub>1</sub>. We outline the solution in the cases where E<sub>1</sub> and T<sub>1</sub> are n dimensional hyper-rectangles and discs.","PeriodicalId":311830,"journal":{"name":"2015 International Conference on Sampling Theory and Applications (SampTA)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Maximally concentrated signals in the special affine fourier transformation domain\",\"authors\":\"A. Zayed\",\"doi\":\"10.1109/SAMPTA.2015.7148841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of maximizing the energy of a signal bandlimited to E<sub>1</sub> = [-σ, σ] on an interval T<sub>1</sub> = [-τ, τ] in the time domain, which is called the energy concentration problem, was solved by a group of mathematicians, D. Slepian, H. Landau, and H. Pollak, at Bell Labs in the 1960s. The goal of this article is to solve the energy concentration problem for the n-dimensional special affine Fourier transformation which includes the Fourier transform, the fractional Fourier transform, the Lorentz transform, the Fresnel transform, and the linear canonical transform (LCT) as special cases. The solution in dimensions higher than one is more challenging because the solution depends on the geometry of the two sets E<sub>1</sub> and T<sub>1</sub>. We outline the solution in the cases where E<sub>1</sub> and T<sub>1</sub> are n dimensional hyper-rectangles and discs.\",\"PeriodicalId\":311830,\"journal\":{\"name\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMPTA.2015.7148841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sampling Theory and Applications (SampTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMPTA.2015.7148841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

20世纪60年代,贝尔实验室的一组数学家D. Slepian、H. Landau和H. Pollak解决了在时域区间T1 = [-τ, τ]上,使信号频带限制为E1 = [-σ, σ]的能量最大化的问题,即能量集中问题。本文的目的是解决n维特殊仿射傅里叶变换的能量集中问题,其中包括傅里叶变换、分数阶傅里叶变换、洛伦兹变换、菲涅耳变换和线性正则变换(LCT)作为特例。维度大于1的解决方案更具挑战性,因为解决方案取决于两个集合E1和T1的几何形状。我们概述了E1和T1是n维超矩形和圆盘的情况下的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximally concentrated signals in the special affine fourier transformation domain
The problem of maximizing the energy of a signal bandlimited to E1 = [-σ, σ] on an interval T1 = [-τ, τ] in the time domain, which is called the energy concentration problem, was solved by a group of mathematicians, D. Slepian, H. Landau, and H. Pollak, at Bell Labs in the 1960s. The goal of this article is to solve the energy concentration problem for the n-dimensional special affine Fourier transformation which includes the Fourier transform, the fractional Fourier transform, the Lorentz transform, the Fresnel transform, and the linear canonical transform (LCT) as special cases. The solution in dimensions higher than one is more challenging because the solution depends on the geometry of the two sets E1 and T1. We outline the solution in the cases where E1 and T1 are n dimensional hyper-rectangles and discs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信