T. Ishigami, T. Kurokawa, Y. Kakuhara, B. Withers, J. Jacobs, A. Kolics, I. Ivanov, M. Sekine, K. Ueno
{"title":"采用低污染cop封盖层的高可靠性铜互连","authors":"T. Ishigami, T. Kurokawa, Y. Kakuhara, B. Withers, J. Jacobs, A. Kolics, I. Ivanov, M. Sekine, K. Ueno","doi":"10.1109/IITC.2004.1345691","DOIUrl":null,"url":null,"abstract":"Copper (Cu) damascene interconnects with a cobalt tungsten phosphorus (CoWP) capping layer were developed using an alkaline-metal-free electrodes plating process without palladium (Pd) catalyst activation. The wafer contamination level after processing is consistent with requirements for present LSI fabrication lines. Within wafer CoWP deposition uniformity is high and interconnects wire resistance increases by less than 5% after deposition. Electromigration (EM) testing shows no failures after two thousand hours and stress induced voiding (SIV) testing shows no failure after three thousand hours. This EM result is a 2 order or magnitude improvement over a non CoWP process.","PeriodicalId":148010,"journal":{"name":"Proceedings of the IEEE 2004 International Interconnect Technology Conference (IEEE Cat. No.04TH8729)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"High reliability Cu interconnection utilizing a low contamination CoWP capping layer\",\"authors\":\"T. Ishigami, T. Kurokawa, Y. Kakuhara, B. Withers, J. Jacobs, A. Kolics, I. Ivanov, M. Sekine, K. Ueno\",\"doi\":\"10.1109/IITC.2004.1345691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Copper (Cu) damascene interconnects with a cobalt tungsten phosphorus (CoWP) capping layer were developed using an alkaline-metal-free electrodes plating process without palladium (Pd) catalyst activation. The wafer contamination level after processing is consistent with requirements for present LSI fabrication lines. Within wafer CoWP deposition uniformity is high and interconnects wire resistance increases by less than 5% after deposition. Electromigration (EM) testing shows no failures after two thousand hours and stress induced voiding (SIV) testing shows no failure after three thousand hours. This EM result is a 2 order or magnitude improvement over a non CoWP process.\",\"PeriodicalId\":148010,\"journal\":{\"name\":\"Proceedings of the IEEE 2004 International Interconnect Technology Conference (IEEE Cat. No.04TH8729)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE 2004 International Interconnect Technology Conference (IEEE Cat. No.04TH8729)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IITC.2004.1345691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 2004 International Interconnect Technology Conference (IEEE Cat. No.04TH8729)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IITC.2004.1345691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High reliability Cu interconnection utilizing a low contamination CoWP capping layer
Copper (Cu) damascene interconnects with a cobalt tungsten phosphorus (CoWP) capping layer were developed using an alkaline-metal-free electrodes plating process without palladium (Pd) catalyst activation. The wafer contamination level after processing is consistent with requirements for present LSI fabrication lines. Within wafer CoWP deposition uniformity is high and interconnects wire resistance increases by less than 5% after deposition. Electromigration (EM) testing shows no failures after two thousand hours and stress induced voiding (SIV) testing shows no failure after three thousand hours. This EM result is a 2 order or magnitude improvement over a non CoWP process.