基于鲁棒神经网络的短期电价预测

Anany Pandey, Manish Pandey
{"title":"基于鲁棒神经网络的短期电价预测","authors":"Anany Pandey, Manish Pandey","doi":"10.1109/ICCT56969.2023.10075993","DOIUrl":null,"url":null,"abstract":"Price prediction and load forecasting is a difficult task for industries. Electricity price are varied according to load or demand of energy. In this article suggested a novel approach for load and price forecasting based on neural network with improved Polak-Rlbière-Polyak(PRP) learning approach. For training and testing purpose use Russian wholesale market. For the implementation and simulation of proposed approach use matrix laboratory (MATLAB) R2020a and high performance computing (HPC) lab. For the evaluation of proposed method use different result parameter mean absolute percentage error, mean square error and root mean square error. The proposed approach shows lower error rate as compare to different techniques proposed by different researchers in terms of MSE, RMSE and MAPE. For the proposed method MAPE value is 1.2069%.","PeriodicalId":128100,"journal":{"name":"2023 3rd International Conference on Intelligent Communication and Computational Techniques (ICCT)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Robust Neural Network Based Short Time Electricity Price Prediction\",\"authors\":\"Anany Pandey, Manish Pandey\",\"doi\":\"10.1109/ICCT56969.2023.10075993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Price prediction and load forecasting is a difficult task for industries. Electricity price are varied according to load or demand of energy. In this article suggested a novel approach for load and price forecasting based on neural network with improved Polak-Rlbière-Polyak(PRP) learning approach. For training and testing purpose use Russian wholesale market. For the implementation and simulation of proposed approach use matrix laboratory (MATLAB) R2020a and high performance computing (HPC) lab. For the evaluation of proposed method use different result parameter mean absolute percentage error, mean square error and root mean square error. The proposed approach shows lower error rate as compare to different techniques proposed by different researchers in terms of MSE, RMSE and MAPE. For the proposed method MAPE value is 1.2069%.\",\"PeriodicalId\":128100,\"journal\":{\"name\":\"2023 3rd International Conference on Intelligent Communication and Computational Techniques (ICCT)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 3rd International Conference on Intelligent Communication and Computational Techniques (ICCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCT56969.2023.10075993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Intelligent Communication and Computational Techniques (ICCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCT56969.2023.10075993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

价格预测和负荷预测是一项艰巨的任务。电价根据负荷或能源需求而变化。本文提出了一种基于神经网络的负荷和电价预测新方法,改进了polak - rlbi - polak (PRP)学习方法。用于培训和测试目的使用俄罗斯批发市场。采用矩阵实验室(MATLAB) R2020a和高性能计算实验室(HPC)对所提出的方法进行实现和仿真。采用不同的结果参数对所提出的方法进行评价,分别为平均绝对百分比误差、均方误差和均方根误差。与不同研究人员在MSE、RMSE和MAPE方面提出的不同方法相比,该方法的错误率较低。对于提出的方法,MAPE值为1.2069%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Robust Neural Network Based Short Time Electricity Price Prediction
Price prediction and load forecasting is a difficult task for industries. Electricity price are varied according to load or demand of energy. In this article suggested a novel approach for load and price forecasting based on neural network with improved Polak-Rlbière-Polyak(PRP) learning approach. For training and testing purpose use Russian wholesale market. For the implementation and simulation of proposed approach use matrix laboratory (MATLAB) R2020a and high performance computing (HPC) lab. For the evaluation of proposed method use different result parameter mean absolute percentage error, mean square error and root mean square error. The proposed approach shows lower error rate as compare to different techniques proposed by different researchers in terms of MSE, RMSE and MAPE. For the proposed method MAPE value is 1.2069%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信