变异萤火虫算法

Sankalap Arora, Sarbjeet Singh, Satvir Singh, Bhanu Sharma
{"title":"变异萤火虫算法","authors":"Sankalap Arora, Sarbjeet Singh, Satvir Singh, Bhanu Sharma","doi":"10.1109/PDGC.2014.7030711","DOIUrl":null,"url":null,"abstract":"In the standard firefly algorithm, every firefly has same parameter settings and its value changes from iteration to iteration. The solutions keeps on changing as the optima are approaching which results that it may fall into local optimum. Furthermore, the underlying strength of the algorithm lies in the attractiveness of less brighter firefly towards the brighter firefly which has an impact on the convergence speed and precision. So to avoid the algorithm to fall into local optimum and reduce the impact of maximum of iteration, a mutated firefly algorithm is proposed in this paper. The proposed algorithm is based on monitoring the movement of fireflies by using different probability for each firefly and then perform mutation on each firefly according to its probability. Simulations are performed to show the performance of proposed algorithm with standard firefly algorithm, based on ten standard benchmark functions. The results reveals that proposed algorithm improves the convergence speed, accurateness and prevent the premature convergence.","PeriodicalId":311953,"journal":{"name":"2014 International Conference on Parallel, Distributed and Grid Computing","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Mutated firefly algorithm\",\"authors\":\"Sankalap Arora, Sarbjeet Singh, Satvir Singh, Bhanu Sharma\",\"doi\":\"10.1109/PDGC.2014.7030711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the standard firefly algorithm, every firefly has same parameter settings and its value changes from iteration to iteration. The solutions keeps on changing as the optima are approaching which results that it may fall into local optimum. Furthermore, the underlying strength of the algorithm lies in the attractiveness of less brighter firefly towards the brighter firefly which has an impact on the convergence speed and precision. So to avoid the algorithm to fall into local optimum and reduce the impact of maximum of iteration, a mutated firefly algorithm is proposed in this paper. The proposed algorithm is based on monitoring the movement of fireflies by using different probability for each firefly and then perform mutation on each firefly according to its probability. Simulations are performed to show the performance of proposed algorithm with standard firefly algorithm, based on ten standard benchmark functions. The results reveals that proposed algorithm improves the convergence speed, accurateness and prevent the premature convergence.\",\"PeriodicalId\":311953,\"journal\":{\"name\":\"2014 International Conference on Parallel, Distributed and Grid Computing\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Parallel, Distributed and Grid Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDGC.2014.7030711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Parallel, Distributed and Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDGC.2014.7030711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

在标准萤火虫算法中,每只萤火虫都有相同的参数设置,其值会随着迭代而变化。随着最优值的逼近,解不断变化,可能会陷入局部最优。此外,算法的潜在优势在于亮度较低的萤火虫对亮度较高的萤火虫的吸引力,这对算法的收敛速度和精度有影响。为了避免算法陷入局部最优,减少迭代最大值的影响,本文提出了一种突变萤火虫算法。该算法通过对每只萤火虫使用不同的概率来监测萤火虫的运动,然后根据每只萤火虫的概率对其进行突变。基于10个标准基准函数,通过仿真验证了该算法与标准萤火虫算法的性能。结果表明,该算法提高了收敛速度和准确性,防止了过早收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mutated firefly algorithm
In the standard firefly algorithm, every firefly has same parameter settings and its value changes from iteration to iteration. The solutions keeps on changing as the optima are approaching which results that it may fall into local optimum. Furthermore, the underlying strength of the algorithm lies in the attractiveness of less brighter firefly towards the brighter firefly which has an impact on the convergence speed and precision. So to avoid the algorithm to fall into local optimum and reduce the impact of maximum of iteration, a mutated firefly algorithm is proposed in this paper. The proposed algorithm is based on monitoring the movement of fireflies by using different probability for each firefly and then perform mutation on each firefly according to its probability. Simulations are performed to show the performance of proposed algorithm with standard firefly algorithm, based on ten standard benchmark functions. The results reveals that proposed algorithm improves the convergence speed, accurateness and prevent the premature convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信