欧式期权和复合期权定价的双分数Black-Scholes模型

Xu Feng
{"title":"欧式期权和复合期权定价的双分数Black-Scholes模型","authors":"Xu Feng","doi":"10.21078/JSSI-2020-346-10","DOIUrl":null,"url":null,"abstract":"Recent empirical studies show that an underlying asset price process may have the property of long memory. In this paper, it is introduced the bifractional Brownian motion to capture the underlying asset of European options. Moreover, a bifractional Black-Scholes partial differential equation formulation for valuing European options based on Delta hedging strategy is proposed. Using the final condition and the method of variable substitution, the pricing formulas for the European options are derived. Furthermore, applying to risk-neutral principle, we obtain the pricing formulas for the compound options. Finally, the numerical experiments show that the parameter HK has a significant impact on the option value.","PeriodicalId":258223,"journal":{"name":"Journal of Systems Science and Information","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bifractional Black-Scholes Model for Pricing European Options and Compound Options\",\"authors\":\"Xu Feng\",\"doi\":\"10.21078/JSSI-2020-346-10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent empirical studies show that an underlying asset price process may have the property of long memory. In this paper, it is introduced the bifractional Brownian motion to capture the underlying asset of European options. Moreover, a bifractional Black-Scholes partial differential equation formulation for valuing European options based on Delta hedging strategy is proposed. Using the final condition and the method of variable substitution, the pricing formulas for the European options are derived. Furthermore, applying to risk-neutral principle, we obtain the pricing formulas for the compound options. Finally, the numerical experiments show that the parameter HK has a significant impact on the option value.\",\"PeriodicalId\":258223,\"journal\":{\"name\":\"Journal of Systems Science and Information\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systems Science and Information\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21078/JSSI-2020-346-10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Science and Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21078/JSSI-2020-346-10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最近的实证研究表明,标的资产价格过程可能具有长记忆性。本文引入双分数布朗运动来捕获欧式期权的标的资产。在此基础上,提出了基于Delta对冲策略的欧式期权估值的双分数阶Black-Scholes偏微分方程公式。利用最终条件和变量代换的方法,推导了欧式期权的定价公式。在此基础上,应用风险中性原则,得到了复合期权的定价公式。最后,数值实验表明HK参数对期权值有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bifractional Black-Scholes Model for Pricing European Options and Compound Options
Recent empirical studies show that an underlying asset price process may have the property of long memory. In this paper, it is introduced the bifractional Brownian motion to capture the underlying asset of European options. Moreover, a bifractional Black-Scholes partial differential equation formulation for valuing European options based on Delta hedging strategy is proposed. Using the final condition and the method of variable substitution, the pricing formulas for the European options are derived. Furthermore, applying to risk-neutral principle, we obtain the pricing formulas for the compound options. Finally, the numerical experiments show that the parameter HK has a significant impact on the option value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信