简化边缘活动图

D. Eppstein, Daniel Frishberg, Elham Havvaei
{"title":"简化边缘活动图","authors":"D. Eppstein, Daniel Frishberg, Elham Havvaei","doi":"10.4230/LIPIcs.SWAT.2020.24","DOIUrl":null,"url":null,"abstract":"We formalize the simplification of activity-on-edge graphs used for visualizing project schedules, where the vertices of the graphs represent project milestones, and the edges represent either tasks of the project or timing constraints between milestones. In this framework, a timeline of the project can be constructed as a leveled drawing of the graph, where the levels of the vertices represent the time at which each milestone is scheduled to happen. We focus on the following problem: given an activity-on-edge graph representing a project, find an equivalent activity-on-edge graph (one with the same critical paths) that has the minimum possible number of milestone vertices among all equivalent activity-on-edge graphs. We provide a polynomial-time algorithm for solving this graph minimization problem.","PeriodicalId":447445,"journal":{"name":"Scandinavian Workshop on Algorithm Theory","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simplifying Activity-on-Edge Graphs\",\"authors\":\"D. Eppstein, Daniel Frishberg, Elham Havvaei\",\"doi\":\"10.4230/LIPIcs.SWAT.2020.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We formalize the simplification of activity-on-edge graphs used for visualizing project schedules, where the vertices of the graphs represent project milestones, and the edges represent either tasks of the project or timing constraints between milestones. In this framework, a timeline of the project can be constructed as a leveled drawing of the graph, where the levels of the vertices represent the time at which each milestone is scheduled to happen. We focus on the following problem: given an activity-on-edge graph representing a project, find an equivalent activity-on-edge graph (one with the same critical paths) that has the minimum possible number of milestone vertices among all equivalent activity-on-edge graphs. We provide a polynomial-time algorithm for solving this graph minimization problem.\",\"PeriodicalId\":447445,\"journal\":{\"name\":\"Scandinavian Workshop on Algorithm Theory\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scandinavian Workshop on Algorithm Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.SWAT.2020.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Workshop on Algorithm Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.SWAT.2020.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们形式化了用于可视化项目进度的边上活动图的简化,其中图的顶点表示项目里程碑,边表示项目的任务或里程碑之间的时间约束。在此框架中,项目的时间轴可以构造为图形的分层绘制,其中顶点的分层表示每个里程碑计划发生的时间。我们关注以下问题:给定一个表示项目的边上活动图,在所有等效的边上活动图中找到一个等效的边上活动图(具有相同关键路径的图),该图具有尽可能少的里程碑顶点。我们提供了一个多项式时间算法来解决这个图最小化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simplifying Activity-on-Edge Graphs
We formalize the simplification of activity-on-edge graphs used for visualizing project schedules, where the vertices of the graphs represent project milestones, and the edges represent either tasks of the project or timing constraints between milestones. In this framework, a timeline of the project can be constructed as a leveled drawing of the graph, where the levels of the vertices represent the time at which each milestone is scheduled to happen. We focus on the following problem: given an activity-on-edge graph representing a project, find an equivalent activity-on-edge graph (one with the same critical paths) that has the minimum possible number of milestone vertices among all equivalent activity-on-edge graphs. We provide a polynomial-time algorithm for solving this graph minimization problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信