使用Doc2Vec识别印度尼西亚推文中的骗局

Titi Widaretna, Jimmy Tirtawangsa, A. Romadhony
{"title":"使用Doc2Vec识别印度尼西亚推文中的骗局","authors":"Titi Widaretna, Jimmy Tirtawangsa, A. Romadhony","doi":"10.1109/ICoICT52021.2021.9527515","DOIUrl":null,"url":null,"abstract":"In this paper, we present our work on hoax detection on a collection of Tweets. We tackle the hoax detection as a text classification problem, with Doc2Vec as the text representation method and SVM as the classifier. We collected and annotated 5000 Tweets that consist of 2500 hoax Tweets and 2500 truth Tweets. The experimental results show that the accuracy of our proposed hoax detection on Tweets is 93.4%.","PeriodicalId":191671,"journal":{"name":"2021 9th International Conference on Information and Communication Technology (ICoICT)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Hoax Identification on Tweets in Indonesia Using Doc2Vec\",\"authors\":\"Titi Widaretna, Jimmy Tirtawangsa, A. Romadhony\",\"doi\":\"10.1109/ICoICT52021.2021.9527515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present our work on hoax detection on a collection of Tweets. We tackle the hoax detection as a text classification problem, with Doc2Vec as the text representation method and SVM as the classifier. We collected and annotated 5000 Tweets that consist of 2500 hoax Tweets and 2500 truth Tweets. The experimental results show that the accuracy of our proposed hoax detection on Tweets is 93.4%.\",\"PeriodicalId\":191671,\"journal\":{\"name\":\"2021 9th International Conference on Information and Communication Technology (ICoICT)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 9th International Conference on Information and Communication Technology (ICoICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICoICT52021.2021.9527515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 9th International Conference on Information and Communication Technology (ICoICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICoICT52021.2021.9527515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们介绍了我们在tweet集合上的恶作剧检测工作。我们采用Doc2Vec作为文本表示方法,SVM作为分类器,将骗局检测作为文本分类问题来解决。我们收集并注释了5000条推文,其中包括2500条恶作剧推文和2500条真实推文。实验结果表明,本文提出的推文骗局检测准确率为93.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hoax Identification on Tweets in Indonesia Using Doc2Vec
In this paper, we present our work on hoax detection on a collection of Tweets. We tackle the hoax detection as a text classification problem, with Doc2Vec as the text representation method and SVM as the classifier. We collected and annotated 5000 Tweets that consist of 2500 hoax Tweets and 2500 truth Tweets. The experimental results show that the accuracy of our proposed hoax detection on Tweets is 93.4%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信