基于GPU的并行计算加速颜色矩和纹理特征提取

H. Heidari, A. Chalechale, A. Mohammadabadi
{"title":"基于GPU的并行计算加速颜色矩和纹理特征提取","authors":"H. Heidari, A. Chalechale, A. Mohammadabadi","doi":"10.1109/IRANIANMVIP.2013.6780024","DOIUrl":null,"url":null,"abstract":"Image retrieval tools can assist people in making efficient use of digital image collections; also it has become imperative to find efficient methods for the retrieval of these images. Most image processing algorithms are inherently parallel, so multithreading processors are suitable in such applications. In very big image databases, image processing takes very long time for run on a single core processor because of single thread execution of algorithms. GPU is more common in most image processing applications due to multithread execution of algorithms, programmability and low cost. In this paper we implement color moments and texture based image retrieval (entropy, standard deviation and local range) in parallel using CUDA programming model to run on GPUs. These features are applied to search images from a database which are similar to a query image. We evaluated our retrieval system using recall, precision, and average precision measures. Experimental results showed that parallel implementation led to an average speed up of 144.67×over the serial implementation when running on a NVIDIA GPU GeForce GT610M. Also the average precision and the average recall of proposed method are 61.968% and 55% respectively.","PeriodicalId":297204,"journal":{"name":"2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Accelerating of color moments and texture features extraction using GPU based parallel computing\",\"authors\":\"H. Heidari, A. Chalechale, A. Mohammadabadi\",\"doi\":\"10.1109/IRANIANMVIP.2013.6780024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image retrieval tools can assist people in making efficient use of digital image collections; also it has become imperative to find efficient methods for the retrieval of these images. Most image processing algorithms are inherently parallel, so multithreading processors are suitable in such applications. In very big image databases, image processing takes very long time for run on a single core processor because of single thread execution of algorithms. GPU is more common in most image processing applications due to multithread execution of algorithms, programmability and low cost. In this paper we implement color moments and texture based image retrieval (entropy, standard deviation and local range) in parallel using CUDA programming model to run on GPUs. These features are applied to search images from a database which are similar to a query image. We evaluated our retrieval system using recall, precision, and average precision measures. Experimental results showed that parallel implementation led to an average speed up of 144.67×over the serial implementation when running on a NVIDIA GPU GeForce GT610M. Also the average precision and the average recall of proposed method are 61.968% and 55% respectively.\",\"PeriodicalId\":297204,\"journal\":{\"name\":\"2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRANIANMVIP.2013.6780024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANMVIP.2013.6780024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

图像检索工具可以帮助人们有效地利用数字图像集合;寻找有效的图像检索方法已成为当务之急。大多数图像处理算法本质上是并行的,因此多线程处理器适合于这种应用。在非常大的图像数据库中,由于算法的单线程执行,图像处理需要在单核处理器上运行很长时间。由于算法的多线程执行、可编程性和低成本,GPU在大多数图像处理应用中更为常见。本文利用CUDA编程模型在gpu上并行实现了基于颜色矩和纹理的图像检索(熵、标准差和局部范围)。这些特征应用于从数据库中搜索与查询图像相似的图像。我们使用召回率、精度和平均精度来评估我们的检索系统。实验结果表明,在NVIDIA GPU GeForce GT610M上运行时,并行实现比串行实现的平均速度提高144.67×over。平均查准率为61.968%,平均查全率为55%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerating of color moments and texture features extraction using GPU based parallel computing
Image retrieval tools can assist people in making efficient use of digital image collections; also it has become imperative to find efficient methods for the retrieval of these images. Most image processing algorithms are inherently parallel, so multithreading processors are suitable in such applications. In very big image databases, image processing takes very long time for run on a single core processor because of single thread execution of algorithms. GPU is more common in most image processing applications due to multithread execution of algorithms, programmability and low cost. In this paper we implement color moments and texture based image retrieval (entropy, standard deviation and local range) in parallel using CUDA programming model to run on GPUs. These features are applied to search images from a database which are similar to a query image. We evaluated our retrieval system using recall, precision, and average precision measures. Experimental results showed that parallel implementation led to an average speed up of 144.67×over the serial implementation when running on a NVIDIA GPU GeForce GT610M. Also the average precision and the average recall of proposed method are 61.968% and 55% respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信