{"title":"媒体应用的Cell SPE专门化","authors":"C. Meenderinck, B. Juurlink","doi":"10.1109/ASAP.2009.10","DOIUrl":null,"url":null,"abstract":"There is a clear trend towards multi-cores to meet the performance requirements of emerging and future applications. A different way to scale performance is, however, to specialize the cores for specific application domains. This option is especially attractive for low-cost embedded systems where less silicon area directly translates to less cost. We propose architectural enhancements to specialize the Cell SPE for video decoding. Specifically, based on deficiencies we observed in the H.264 kernels, we propose a handful of application-specific instructions to improve performance. The speedups achieved are between 1.84 and 2.37.","PeriodicalId":202421,"journal":{"name":"2009 20th IEEE International Conference on Application-specific Systems, Architectures and Processors","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Specialization of the Cell SPE for Media Applications\",\"authors\":\"C. Meenderinck, B. Juurlink\",\"doi\":\"10.1109/ASAP.2009.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a clear trend towards multi-cores to meet the performance requirements of emerging and future applications. A different way to scale performance is, however, to specialize the cores for specific application domains. This option is especially attractive for low-cost embedded systems where less silicon area directly translates to less cost. We propose architectural enhancements to specialize the Cell SPE for video decoding. Specifically, based on deficiencies we observed in the H.264 kernels, we propose a handful of application-specific instructions to improve performance. The speedups achieved are between 1.84 and 2.37.\",\"PeriodicalId\":202421,\"journal\":{\"name\":\"2009 20th IEEE International Conference on Application-specific Systems, Architectures and Processors\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 20th IEEE International Conference on Application-specific Systems, Architectures and Processors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASAP.2009.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 20th IEEE International Conference on Application-specific Systems, Architectures and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2009.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Specialization of the Cell SPE for Media Applications
There is a clear trend towards multi-cores to meet the performance requirements of emerging and future applications. A different way to scale performance is, however, to specialize the cores for specific application domains. This option is especially attractive for low-cost embedded systems where less silicon area directly translates to less cost. We propose architectural enhancements to specialize the Cell SPE for video decoding. Specifically, based on deficiencies we observed in the H.264 kernels, we propose a handful of application-specific instructions to improve performance. The speedups achieved are between 1.84 and 2.37.