用于态势评估的弹道簇融合

L. Snidaro, C. Piciarelli, G. Foresti
{"title":"用于态势评估的弹道簇融合","authors":"L. Snidaro, C. Piciarelli, G. Foresti","doi":"10.1109/ICIF.2006.301658","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of identifying anomalous events in the context of a multi sensor surveillance system. Targets' trajectories are analyzed and compared to common patterns of activity represented as clusters of trajectories. Here we extend our previous work to cater for observations provided by multiple cameras observing the same scene. Data fusion is performed within the Dempster-Shafer theory of evidence framework. The proposed approach is validated through experimental results performed in the context of an automatic road traffic monitoring application","PeriodicalId":248061,"journal":{"name":"2006 9th International Conference on Information Fusion","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Fusion of trajectory clusters for situation assessment\",\"authors\":\"L. Snidaro, C. Piciarelli, G. Foresti\",\"doi\":\"10.1109/ICIF.2006.301658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the problem of identifying anomalous events in the context of a multi sensor surveillance system. Targets' trajectories are analyzed and compared to common patterns of activity represented as clusters of trajectories. Here we extend our previous work to cater for observations provided by multiple cameras observing the same scene. Data fusion is performed within the Dempster-Shafer theory of evidence framework. The proposed approach is validated through experimental results performed in the context of an automatic road traffic monitoring application\",\"PeriodicalId\":248061,\"journal\":{\"name\":\"2006 9th International Conference on Information Fusion\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 9th International Conference on Information Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2006.301658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 9th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2006.301658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在本文中,我们解决了在多传感器监控系统背景下识别异常事件的问题。对目标的轨迹进行分析,并将其与表示为轨迹簇的常见活动模式进行比较。在这里,我们扩展了以前的工作,以满足观察同一场景的多个摄像机提供的观察。数据融合是在证据框架的Dempster-Shafer理论中进行的。通过在自动道路交通监控应用的背景下进行的实验结果验证了所提出的方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fusion of trajectory clusters for situation assessment
In this paper, we address the problem of identifying anomalous events in the context of a multi sensor surveillance system. Targets' trajectories are analyzed and compared to common patterns of activity represented as clusters of trajectories. Here we extend our previous work to cater for observations provided by multiple cameras observing the same scene. Data fusion is performed within the Dempster-Shafer theory of evidence framework. The proposed approach is validated through experimental results performed in the context of an automatic road traffic monitoring application
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信